數(shù)學公式,g(x)=ax(x>2).
(1)若?x0∈[2,+∞),使f(x0)=m成立,則實數(shù)m的取值范圍是________
(2)若?x1∈[2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),則實數(shù)a的取值范圍為________.

解:(1)
當x≥2時,函數(shù)f(x)單調增,所以f(x)min=3
∵?x0∈[2,+∞),使f(x0)=m成立,
∴實數(shù)m的取值范圍是[3,+∞)
(2)?x1∈[2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),即使得f(x)的值域是g(x)值域的子集
?x∈[2,+∞),f(x)的值域為[3,+∞)
當a>1時,g(x)=ax(x>2)的值域為(a2,+∞),∴a2<3,∴1<a<
當0<a<1時,函數(shù)為減函數(shù),顯然不成立
綜上,實數(shù)a的取值范圍為(1,
故答案為:[3,+∞),(1,
分析:(1)配方可得當x≥2時,函數(shù)f(x)單調增,所以f(x)min=3,從而可求實數(shù)m的取值范圍;
(2)?x1∈[2,+∞),?x2∈(2,+∞)使得f(x1)=g(x2),即使得f(x)的值域是g(x)值域的子集,由此可求結論.
點評:本題考查恒成立問題,考查函數(shù)的最值,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x+
1
x
,x∈[-2,-1)
-2,x∈[-1,
1
2
)
x-
1
x
,x∈[
1
2
,2]

(1)求f(x)的值域;
(2)設函數(shù)g(x)=ax-2,x∈[-2,2],對于任意x1∈[-2,2],總存在x0∈[-2,2],使得g(x0)=f(x1)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
mx
x2+n
(m,n∈R)在x=1處取到極值2
(Ⅰ)求f(x)的解析式;
(Ⅱ)設函數(shù)g(x)=ax-lnx.若對任意的x1∈[
1
2
,2]
,總存在唯一的x2∈[
1
e2
,
1
e
]
,使得g(x2)=f(x1),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a(x-
1
x
)-lnx,x∈R.
(1)若a=2,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若a>0,求函數(shù)f(x)的單調區(qū)間;
(3)設函數(shù)g(x)=-
a
x
.若至少存在一個x0∈[1,+∞),使得f(x0)>g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
mx
x2+n
(m,n∈R)在x=1處取到極值2.
(1)求f(x)的解析式;
(2)設函數(shù)g(x)=ax-lnx.若對任意的x1∈[
1
2
,2],總存在唯一的x2∈[
1
e2
,e](e為自然對數(shù)的底),使得g(x2)=f(x1),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x+
1
x
,x∈[-2,-1)
-2,x∈[-1,
1
2
)
x-
1
x
,x∈[
1
2
,2]

(1)判斷當x∈[-2,1)時,函數(shù)f(x)的單調性,并用定義證明之;
(2)求f(x)的值域
(3)設函數(shù)g(x)=ax-2,x∈[-2,2],若對于任意x1∈[-2,2],總存在x0∈[-2,2],使g(x0)=f(x1)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案