某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測(cè)試,學(xué)生如果通過(guò)其中2次測(cè)試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加其余的測(cè)試,而每個(gè)學(xué)生最多也只能參加5次測(cè)試.假設(shè)某學(xué)生每次通過(guò)測(cè)試的概率都是
13
,每次測(cè)試通過(guò)與否相互獨(dú)立.規(guī)定:若前4次都沒有通過(guò)測(cè)試,則第5次不能參加測(cè)試.
(1)求該學(xué)生考上大學(xué)的概率;
(2)如果考上大學(xué)或參加完5次考試就結(jié)束,求該生至少參加四次考試的概率.
分析:(1)記“該生考上大學(xué)”的事件為A,其對(duì)立事件為
.
A
,直接求P(A)比較困難,于是通過(guò)求1-P(
.
A
)來(lái)得到P(A)的值.
(2)記“該生參加測(cè)試的次數(shù)”為ξ,求出P(ξ=4)和P(ξ=5)的值,相加即得所求.
解答:解:(1)記“該生考上大學(xué)”的事件為A,其對(duì)立事件為
.
A
,
P(
.
A
)=
C
1
4
(
1
3
)(
2
3
)3(
2
3
)+(
2
3
)4=
112
243
,
P(A)=1-P(
.
A
)=1-
112
243
=
131
243
.…(6分)
(2)記“該生參加測(cè)試的次數(shù)”為ξ,則ξ=4說(shuō)明前3次考試只通過(guò)了1次,而第4次通過(guò)了,或前4次都沒有通過(guò),
P(ξ=4)=
C
1
3
(
1
3
)(
2
3
)2(
1
3
)+(
2
3
)4=
4
27
+
16
81
=
28
81
,
ξ=5說(shuō)明前4次考試只通過(guò)了1次,,故 P(ξ=5)=
C
1
4
(
1
3
)(
2
3
)3=
32
81

∴該生至少參加四次考試的概率P=
28
81
+
32
81
=
20
27
.…(12分)
點(diǎn)評(píng):本題主要考查n次獨(dú)立重復(fù)實(shí)驗(yàn)中恰好發(fā)生k次的概率,互斥事件的概率加法公式,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地區(qū)試行高考考試改革:在高三學(xué)年中舉行4次統(tǒng)一測(cè)試,學(xué)生如果通過(guò)其中2次測(cè)試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不再參加其余的測(cè)試,而每個(gè)學(xué)生最多也只能參加4次測(cè)試.假設(shè)某學(xué)生每次通過(guò)測(cè)試的概率都是
23
,每次測(cè)試時(shí)間間隔恰當(dāng),每次測(cè)試通過(guò)與否互相獨(dú)立.
(Ⅰ)求該學(xué)生在前兩次測(cè)試中至少有一次通過(guò)的概率;
(Ⅱ)如果考上大學(xué)或參加完4次測(cè)試,那么測(cè)試就結(jié)束.記該生參加測(cè)試的次數(shù)為X,求X的分布列及X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測(cè)試,學(xué)生如果通過(guò)其中的2次測(cè)試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加后面的測(cè)試,而每個(gè)學(xué)生最多也只能參加5次測(cè)試,假設(shè)某學(xué)生每次通過(guò)測(cè)試的概率都是
13
,每次測(cè)試通過(guò)與否相互獨(dú)立.規(guī)定:若前4次都沒有通過(guò)測(cè)試,則第5次不能參加測(cè)試.
(1)求該學(xué)生恰好經(jīng)過(guò)4次測(cè)試考上大學(xué)的概率;
(2)求該學(xué)生考上大學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測(cè)試,學(xué)生如果通過(guò)其中2次測(cè)試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加其余的測(cè)試,而每個(gè)學(xué)生最多也只能參加5次測(cè)試.假設(shè)某學(xué)生每次通過(guò)測(cè)試的概率都是
13
,每次測(cè)試時(shí)間間隔恰當(dāng),每次測(cè)試通過(guò)與否互相獨(dú)立.
(1)求該學(xué)生考上大學(xué)的概率.
(2)如果考上大學(xué)或參加完5次測(cè)試就結(jié)束,記該生參加測(cè)試的次數(shù)為X,求X的分布列及X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測(cè)試,學(xué)生如果通過(guò)其中2次測(cè)試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加其余的測(cè)試,而每個(gè)學(xué)生最多也只能參加5次測(cè)試.假設(shè)某學(xué)生每次通過(guò)測(cè)試的概率都是
13
,每次測(cè)試通過(guò)與否互相獨(dú)立.規(guī)定:若前4次都沒有通過(guò)測(cè)試,則第5次不能參加測(cè)試.
(I)求該學(xué)生考上大學(xué)的概率;
(II)如果考上大學(xué)或參加完5次測(cè)試就結(jié)束,求該生參加測(cè)試的次數(shù)為4的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案