精英家教網(wǎng)某旅游景區(qū)的觀景臺(tái)P位于高(山頂?shù)缴侥_水平面M的垂直高度PO)為2Km的山峰上,山腳下有一段位于水平線上筆直的公路AB,山坡面可近似地看作平面PAB,且△PAB為等腰三角形.山坡面與腳所在水平面M所成的二面角為α(0°<α<90°),且sinα=
2
5
.現(xiàn)從山腳的公路AB某處C0開(kāi)始修建與公路AB成β角的盤(pán)山公路C0C1,C1C2,C2C3,…Cn-1Cn(如圖所示).其中0<β<90°,sinβ=
1
4

(1)試問(wèn):垂直高度每升高100米,盤(pán)山公路需修建多長(zhǎng)?若修建盤(pán)山公路至半山腰(高度為山高的一半),在半山腰的中心Q處修建上山纜車索道站,索道PQ依山而建(與山坡面平行,離坡面高度忽略不計(jì)),問(wèn)盤(pán)山公路的長(zhǎng)度和索道的長(zhǎng)度各是多少?
(2)若修建盤(pán)山公路為xKm,其造價(jià)為
x2+100
 a
萬(wàn)元.而修建索道的造價(jià)為2
2
a元/Km.
問(wèn)修建盤(pán)山公路至多高時(shí),再修建上山索道至觀景臺(tái),總造價(jià)最少.
分析:(1)在盤(pán)山公路上取一個(gè)點(diǎn),作出該點(diǎn)到平面的垂線,再利用三垂線定理作出二面角棱的垂線,連接兩個(gè)垂足,最后結(jié)合直角三角形內(nèi)三角函數(shù)的定義可求出索道長(zhǎng)與山高的倍數(shù)關(guān)系,得出結(jié)論;
(2)設(shè)盤(pán)山公路修至山高的距離為x,在(1)的條件下,結(jié)合勾股定理建立關(guān)于x的函數(shù),最后利用導(dǎo)數(shù)的符號(hào)得出此函數(shù)是先減后增的函數(shù),極小值即為函數(shù)的最小值,從而得出最少總價(jià)對(duì)應(yīng)的x.
解答:精英家教網(wǎng)解(1)在盤(pán)山公路C0C1上任選一點(diǎn)D,作DE⊥平面M交平面M于E,過(guò)E作EF⊥AB交AB于F,
連接DF,易知DF⊥C0F.sin∠DFE=
2
5
,sin∠DC0F=
1
4

∵DF=
1
4
C0D,DE=
2
5
DF,∴DE=
1
10
C0D
所以盤(pán)山公路長(zhǎng)度是山高的10倍,索道長(zhǎng)是山高的
5
2
倍.所以垂直高度每升高100米,盤(pán)山公路需修建1000米.
從山腳至半山腰,盤(pán)山公路為10Km.從半山腰至山頂,索道長(zhǎng)2.5Km.(6分)
(2)設(shè)盤(pán)山公路修至山高x(0<x<2)Km,則盤(pán)山公路長(zhǎng)為10x,索道長(zhǎng)
5
2
(2-x)

設(shè)總造價(jià)為y萬(wàn)元,則y=
(10x)2+100
 a+
5
2
(2-x)•2
2
a

=(10
x2+1
-5
2
x
)a+10
2
a

令y′=
10x
x2+1
-5
2
=0,則x=1

當(dāng)x∈(0,1)時(shí)y′<0,函數(shù)y單調(diào)遞減
當(dāng)x∈(1、2)時(shí),y′>0,函數(shù)y單調(diào)遞增
∴x=1,y有最小值,即修建盤(pán)山公路′至山高1Km時(shí),總造價(jià)最小.(13分)
點(diǎn)評(píng):第一小問(wèn)利用三垂線定理作輔助線,解決立體幾何中與二面角有關(guān)的問(wèn)題,是立幾中常見(jiàn)的思路;第二小問(wèn)處理帶根號(hào)式子的函數(shù),用導(dǎo)數(shù)研究單調(diào)性,不失為一個(gè)很好的工具.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•藍(lán)山縣模擬)某旅游景區(qū)的觀景臺(tái)P位于高(山頂?shù)缴侥_水平面M的垂直高度PO)為2km的山峰上,山腳下有一段位于水平線上筆直的公路AB,山坡面可近似地看作平面PAB,且△PAB為等腰三角形.山坡面與山腳所在水平面M所成的二面角為α(0°<α<90°),且sinα=
2
5
.現(xiàn)從山腳的水平公路AB某處C0開(kāi)始修建一條盤(pán)山公路,該公路的第一段、第二段、第三段…,第n-1段依次為
C0C1,C1C2,C2C3,…,Cn-1Cn(如圖所示),且C0C1,C1C2,C2C3,…,Cn-1Cn與AB所成的角均為β,其中0<β<90°,sinβ=
1
4
.試問(wèn):
(1)每修建盤(pán)山公路多少米,垂直高度就能升高100米.若修建盤(pán)山公路至半山腰(高度為山高的一半),在半山腰的中心Q處修建上山纜車索道站,索道PQ依山而建(與山坡面平行,離坡面高度忽略不計(jì)),問(wèn)盤(pán)山公路的長(zhǎng)度和索道的長(zhǎng)度各是多少?
(2)若修建xkm盤(pán)山公路,其造價(jià)為
x2+100
 a萬(wàn)元.修建索道的造價(jià)為2
2
a萬(wàn)元/km.問(wèn)修建盤(pán)山公路至多高時(shí),再修建上山索道至觀景臺(tái),總造價(jià)最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省長(zhǎng)沙市高三第六次月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分13分)

 

某旅游景區(qū)的觀景臺(tái)P位于高(山頂?shù)缴侥_水平面M的垂直高度PO)為2km的山峰上,山腳下有一段位于水平線上筆直的公路AB,山坡面可近似地看作平面PAB,且△PAB為等腰三角形.山坡面與山腳所在水平面M所成的二面角為α(0°<α<90°),且sinα=.現(xiàn)從山腳的水平公路AB某處C0開(kāi)始修建一條盤(pán)山公路,該公路的第一段、第二段、第三段…,第n-1段依次為C0C1,C1C2,C2C3,…,Cn-1Cn(如圖所示),且C0C1,C1C2,C2C3,…,Cn-1Cn與AB所成的角均為β,其中0<β<90°,sinβ=.試問(wèn):

(1)每修建盤(pán)山公路多少米,垂直高度就能升高100米.若修建盤(pán)山公路至半山腰(高度為山高的一半),在半山腰的中心Q處修建上山纜車索道站,索道PQ依山而建(與山坡面平行,離坡面高度忽略不計(jì)),問(wèn)盤(pán)山公路的長(zhǎng)度和索道的長(zhǎng)度各是多少?

(2)若修建xkm盤(pán)山公路,其造價(jià)為 a萬(wàn)元.修建索道的造價(jià)為2a萬(wàn)元/km.問(wèn)修建盤(pán)山公路至多高時(shí),再修建上山索道至觀景臺(tái),總造價(jià)最少.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年湖南省長(zhǎng)沙一中高三(下)第六次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某旅游景區(qū)的觀景臺(tái)P位于高(山頂?shù)缴侥_水平面M的垂直高度PO)為2Km的山峰上,山腳下有一段位于水平線上筆直的公路AB,山坡面可近似地看作平面PAB,且△PAB為等腰三角形.山坡面與腳所在水平面M所成的二面角為α(0°<α<90°),且sinα=.現(xiàn)從山腳的公路AB某處C開(kāi)始修建與公路AB成β角的盤(pán)山公路CC1,C1C2,C2C3,…Cn-1Cn(如圖所示).其中0<β<90°,sinβ=
(1)試問(wèn):垂直高度每升高100米,盤(pán)山公路需修建多長(zhǎng)?若修建盤(pán)山公路至半山腰(高度為山高的一半),在半山腰的中心Q處修建上山纜車索道站,索道PQ依山而建(與山坡面平行,離坡面高度忽略不計(jì)),問(wèn)盤(pán)山公路的長(zhǎng)度和索道的長(zhǎng)度各是多少?
(2)若修建盤(pán)山公路為xKm,其造價(jià)為萬(wàn)元.而修建索道的造價(jià)為2a元/Km.
問(wèn)修建盤(pán)山公路至多高時(shí),再修建上山索道至觀景臺(tái),總造價(jià)最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南省永州市藍(lán)山二中高三第六次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某旅游景區(qū)的觀景臺(tái)P位于高(山頂?shù)缴侥_水平面M的垂直高度PO)為2km的山峰上,山腳下有一段位于水平線上筆直的公路AB,山坡面可近似地看作平面PAB,且△PAB為等腰三角形.山坡面與山腳所在水平面M所成的二面角為α(0°<α<90°),且sinα=.現(xiàn)從山腳的水平公路AB某處C開(kāi)始修建一條盤(pán)山公路,該公路的第一段、第二段、第三段…,第n-1段依次為
CC1,C1C2,C2C3,…,Cn-1Cn(如圖所示),且CC1,C1C2,C2C3,…,Cn-1Cn與AB所成的角均為β,其中0<β<90°,sinβ=.試問(wèn):
(1)每修建盤(pán)山公路多少米,垂直高度就能升高100米.若修建盤(pán)山公路至半山腰(高度為山高的一半),在半山腰的中心Q處修建上山纜車索道站,索道PQ依山而建(與山坡面平行,離坡面高度忽略不計(jì)),問(wèn)盤(pán)山公路的長(zhǎng)度和索道的長(zhǎng)度各是多少?
(2)若修建xkm盤(pán)山公路,其造價(jià)為 a萬(wàn)元.修建索道的造價(jià)為2a萬(wàn)元/km.問(wèn)修建盤(pán)山公路至多高時(shí),再修建上山索道至觀景臺(tái),總造價(jià)最少.

查看答案和解析>>

同步練習(xí)冊(cè)答案