設(shè)函數(shù)f(x)的定義域為R,若存在與x無關(guān)的正常數(shù)M,使|f(x)|≤M|x|對一切實數(shù)x恒成立,則稱f(x)為有界泛函.有下面四個函數(shù):

①f(x)=1;  

②f(x)=x2;  

③f(x)=2xsinx;  

其中屬于有界泛函的是(  )

 

A.

①②

B.

③④

C.

①③

D.

②④

考點:

函數(shù)恒成立問題.

專題:

計算題;新定義.

分析:

本題考查閱讀題意的能力,根據(jù)有界泛函的定義進(jìn)行判定:對于①可以利用定義直接加以判斷,

對于②可以利用絕對值的性質(zhì)將不等式變形為|x|≤m,

對于③,即|2sinx|≤M,只需M≥2,

對于④,將不等式變形為≤M,可以求出符合條件的m的最小值

解答:

解:對于①,顯然不存在M都有1≤M|x|成立,故①錯;

對于②,|f(x)|=|x2|≤M|x|,即|x|≤M,不存在這樣的M對一切實數(shù)x均成立,故不是有界泛函;②錯

對于③,f(x)|=|2xsinx|≤M|x|,即|2sinx|≤M,當(dāng)M≥2時,f(x)=3xsinx是有界泛函..③對

對于④,||)|≤M|x|,即≤M,只需,④對

綜上所述,③④

故選B

點評:

本題屬于開放式題,題型新穎,考查數(shù)學(xué)的閱讀理解能力.知識點方面主要考查了函數(shù)的最值及其幾何意義,考生需要有較強(qiáng)的分析問題解決問題的能力,對選支逐個加以分析變形,利用函數(shù)、不等式的進(jìn)行檢驗,方可得出正確結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時,f(x)=2x-cosx,則a=f(-
3
2
)與b=f(
15
2
)的大小關(guān)系為
a>b
a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為D,若對于任意x1,x2∈D,當(dāng)x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)為定義在[0,1]上的非減函數(shù),且滿足以下三個條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當(dāng)x∈[0,
1
4
]
時,f(x)≥2x恒成立.則f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時,f(x)=2x-cosx,則a=f(-數(shù)學(xué)公式)與b=f(數(shù)學(xué)公式)的大小關(guān)系為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省蚌埠二中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時,f(x)=2x-cosx,則a=f(-)與b=f()的大小關(guān)系為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省月考題 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時,f(x)=2x﹣cosx,則a=f(﹣)與b=f()的大小關(guān)系為(    ).

查看答案和解析>>

同步練習(xí)冊答案