(12分)有一塊邊長為4的正方形鋼板,現(xiàn)對其切割、焊接成一個(gè)長方體無蓋容器(切、焊損耗忽略不計(jì))。有人應(yīng)用數(shù)學(xué)知識作如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)全等的小正方形,剩余部分圍成一個(gè)長方體,該長方體的高是小正方形的邊長。

(1)請你求出這種切割、焊接而成的長方體容器的最大容積;

(2)請你判斷上述方案是否是最佳方案,若不是,請?jiān)O(shè)計(jì)一種新方案,使材料浪費(fèi)最少,且所得長方體容器的容積。

 

【答案】

(1)當(dāng)時(shí),取最大值 ;

(2)重新設(shè)計(jì)方案如下:

 

如圖①,在正方形的兩個(gè)角處各切下一個(gè)邊長為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;將圖②焊成長方體容器.新焊長方體容器底面是一長方形,長為3,寬為2,此長方體容積為6,故第二種方案符合要求.

【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。求解最值問題。

(1)因?yàn)樵O(shè)切去正方形邊長為x,則焊接成的長方體的底面邊長為,高為x

,然后求解導(dǎo)數(shù)來判定單調(diào)性得到極值,進(jìn)而求解最值。

(2)在正方形的兩個(gè)角處各切下一個(gè)邊長為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;將圖②焊成長方體容器.新焊長方體容器底面是一長方形,長為3,寬為2,此長方體容積為6,故第二種方案符合要求

(1)設(shè)切去正方形邊長為x,則焊接成的長方體的底面邊長為,高為x

                          ……(2分)

.                                ……(3分)

當(dāng)時(shí),是關(guān)于x的增函數(shù);

當(dāng)時(shí),是關(guān)于x的減函數(shù).

∴當(dāng)時(shí),取最大值                                       ……(7分)

(2)重新設(shè)計(jì)方案如下:

 

如圖①,在正方形的兩個(gè)角處各切下一個(gè)邊長為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;將圖②焊成長方體容器.新焊長方體容器底面是一長方形,長為3,寬為2,此長方體容積為6,故第二種方案符合要求.……(12分)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)有一塊邊長為4的正方形鋼板,現(xiàn)對其進(jìn)行切割、焊接成一個(gè)長方體形無蓋容器(切、焊損耗忽略不計(jì)).有人應(yīng)用數(shù)學(xué)知識作了如下設(shè)計(jì):如圖(a),在鋼板的四個(gè)角處各切去一個(gè)小正方形,剩余部分圍成一個(gè)長方體,該長方體的高為小正方形邊長,如圖(b).
(1)請你求出這種切割、焊接而成的長方體的最大容積V1
(2)由于上述設(shè)計(jì)存在缺陷(材料有所浪費(fèi)),請你重新設(shè)計(jì)切、焊方法,使材料浪費(fèi)減少,而且所得長方體容器的容積V2>V1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆山西省介休市十中高三下學(xué)期模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)
有一塊邊長為4的正方形鋼板,現(xiàn)對其切割、焊接成一個(gè)長方體無蓋容器(切、焊損耗忽略不計(jì)).有人應(yīng)用數(shù)學(xué)知識作如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)小正方形,剩余部分圍成一個(gè)長方體,該長方體的高是小正方形的邊長.
(1)請你求出這種切割、焊接而成的長方體容器的最大容積V1;
(2)請你判斷上述方案是否是最佳方案,若不是,請?jiān)O(shè)計(jì)一種新方案,使材料浪費(fèi)最少,且所得長方體容器的容積V2>V1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山西省介休市高三下學(xué)期模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)

有一塊邊長為4的正方形鋼板,現(xiàn)對其切割、焊接成一個(gè)長方體無蓋容器(切、焊損耗忽略不計(jì)).有人應(yīng)用數(shù)學(xué)知識作如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)小正方形,剩余部分圍成一個(gè)長方體,該長方體的高是小正方形的邊長.

(1)請你求出這種切割、焊接而成的長方體容器的最大容積V1;

(2)請你判斷上述方案是否是最佳方案,若不是,請?jiān)O(shè)計(jì)一種新方案,使材料浪費(fèi)最少,且所得長方體容器的容積V2>V1.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高二上學(xué)期第一次段考理科數(shù)學(xué)卷 題型:解答題

(本題滿分14分).有一塊邊長為4的正方形鋼板,現(xiàn)對其切割、焊接成一個(gè)長方體形無蓋容器(切、焊損耗忽略不計(jì)).有人應(yīng)用數(shù)學(xué)知識作如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)邊長為的小正方形,剰余部分圍成一個(gè)長方體,該長方體的高是小正方形的邊長.

(1)請你求出這種切割、焊接而成的長方體容器的的容積V1(用表示);

(2)經(jīng)過設(shè)計(jì)(1)的方法,計(jì)算得到當(dāng)時(shí),Vl取最大值,為了材料浪費(fèi)最少,工人師傅還實(shí)踐出了其它焊接方法,請寫出與(1)的焊接方法更佳(使材料浪費(fèi)最少,容積比Vl大)的設(shè)計(jì)方案,并計(jì)算利用你的設(shè)計(jì)方案所得到的容器的容積。

 

查看答案和解析>>

同步練習(xí)冊答案