已知橢圓C1+=1(a>b>0)的離心率為,直線l:y=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程.
【答案】分析:(1)先利用離心率為,求出a,b,c之間的關(guān)系,再利用直線l:x-y+2=0與圓相切求出b,即可求橢圓C1的方程;
(2)把條件轉(zhuǎn)化為動點M到定點F2(1,0)的距離等于它到直線l1:x=-1的距離即可求出點M的軌跡C2的方程.
解答:解:(1)由e=,得=1-e2=
由直線l:x-y+2=0與圓x2+y2=b2相切,得=|b|.
所以,b=,a=
所以橢圓的方程是+=1.
(2)由條件,知|MF2|=|MP|,
即動點M到定點F2(1,0)的距離等于它到直線l1:x=-1的距離,
由拋物線的定義得點M的軌跡C2的方程是y2=4x(x≠0)
點評:本題是對圓與橢圓知識的綜合考查.當直線與圓相切時,可以利用圓心到直線的距離等于半徑求解.,也可以把直線與圓的方程聯(lián)立讓對應方程的判別式為0求解.本題用的是第一種.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C1=1,拋物線C2:(y-m)2=2px(p>0),且C1、C2的公共弦AB過橢圓C1的右焦點.

(1)當ABx軸時,求m、p的值,并判斷拋物線C2的焦點是否在直線AB上;

(2)若p=且拋物線C2的焦點在直線AB上,求m的值及直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省寧波市慈溪中學高三(上)第一次月考數(shù)學試卷(文科)(解析版) 題型:選擇題

已知橢圓C1=1 (a>b>0)與雙曲線C2:x2-=1 有公共的焦點,C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點.若C1恰好將線段AB三等分,則( )
A.a(chǎn)2=
B.a(chǎn)2=3
C.b2=
D.b2=2

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年遼寧省本溪一中、莊河高中聯(lián)考高三(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

已知橢圓C1+=1(a>b>0)的長軸長為4,離心率為,F(xiàn)1、F2分別為其左右焦點.一動圓過點F2,且與直線x=-1相切.
(Ⅰ)(。┣髾E圓C1的方程; (ⅱ)求動圓圓心C軌跡的方程;
(Ⅱ)在曲線上C有兩點M、N,橢圓C1上有兩點P、Q,滿足MF2共線,共線,且=0,求四邊形PMQN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年吉林省長春十一高高二(下)期初數(shù)學試卷(理科)(解析版) 題型:解答題

已知橢圓C1=1(a>b>0)的左、右焦點分別為F1、F2,其中F2也是拋物線C2:y2=4x的焦點,M是C1與C2在第一象限的交點,且
(I)求橢圓C1的方程;   
(Ⅱ)已知菱形ABCD的頂點A、C在橢圓C1上,頂點B、D在直線7x-7y+1=0上,求直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省中山一中等六校聯(lián)考高三(上)12月月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知橢圓C1+=1(a>b>0)的離心率為,直線l:x-y+=0與橢圓C1相切.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1且垂直與橢圓的長軸,動直線l2垂直于直線l1于點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(3)若A(x1,2),B(x2,y2),C(x,y)是C2上不同的點,且AB⊥BC,求實數(shù)y的取值范圍.

查看答案和解析>>

同步練習冊答案