如圖,橢圓
x2
25
+
y2
9
=1
上的點(diǎn)M到焦點(diǎn)F1的距離為2,N為MF1的中點(diǎn),則|ON|(O為坐標(biāo)原點(diǎn))的值為( 。
分析:根據(jù)橢圓的定義,橢圓上任意一點(diǎn)到兩個(gè)焦點(diǎn)F1、F2距離之和等于長(zhǎng)軸2a,因此求出橢圓的半長(zhǎng)軸a=5,從而得到|MF1|+|MF2|=10,根據(jù)點(diǎn)M到左焦點(diǎn)F1的距離為2,得到|MF2|=10-2=8,最后在△MF1F2中,利用中位線定理,得到|ON|=
1
2
|MF2|=4.
解答:解:∵橢圓方程為
x2
25
+
y2
9
=1
,
∴橢圓的a=5,長(zhǎng)軸2a=10,可得橢圓上任意一點(diǎn)到兩個(gè)焦點(diǎn)F1、F2距離之和等于10.
∴|MF1|+|MF2|=10
∵點(diǎn)M到左焦點(diǎn)F1的距離為2,即|MF1|=2,
∴|MF2|=10-2=8,
∵△MF1F2中,N、O分別是MF1、F1F2中點(diǎn)
∴|ON|=
1
2
|MF2|=4.
故選A.
點(diǎn)評(píng):本題以橢圓的焦點(diǎn)三角形為例,給出橢圓上一點(diǎn)到左焦點(diǎn)的距離,求三角形的中位線長(zhǎng).著重考查了三角形中位線定理和橢圓的定義等知識(shí)點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖把橢圓
x2
25
+
y2
16
=1
的長(zhǎng)軸AB分成8分,過(guò)每個(gè)分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,…P7七個(gè)點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則|P1F|+|P2F|+…+|P7F|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A1,A為橢圓的兩個(gè)頂點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn).
(Ⅰ)寫(xiě)出橢圓的方程;
(Ⅱ)過(guò)線段OA上異于O,A的任一點(diǎn)K作OA的垂線,交橢圓于P,P1兩點(diǎn),直線A1P與AP1交于點(diǎn)M.求證:點(diǎn)M在雙曲線
x2
25
-
y2
9
=1
上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:在橢圓
x2
25
+
y2
16
=1中有一內(nèi)接矩形ABCD(四個(gè)頂點(diǎn)都在橢圓上),A點(diǎn)在第一象限內(nèi).當(dāng)內(nèi)接矩形ABCD的面積最大時(shí),點(diǎn)A的坐標(biāo)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川 題型:填空題

如圖把橢圓
x2
25
+
y2
16
=1
的長(zhǎng)軸AB分成8分,過(guò)每個(gè)分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,…P7七個(gè)點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則|P1F|+|P2F|+…+|P7F|=______.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案