若三角形面積和周長分別為S、L,其半徑為r,則;根據(jù)類比思想,若四面體體積和表面積分別為V、P,其內(nèi)切球半徑為R,則R=   
【答案】分析:由類比推理的規(guī)則點類比線,線類比面,面類比體,由此類比規(guī)則求解本題即可
解答:解:由已知三角形面積和周長分別為S、L,其半徑為r,則;三角形是平面圖形,二維的,四面體是空間圖形是三維的,三角形有三個邊,四面體有四個面,三角形有面積,四面體有體積,則類比得:四面體體積和表面積分別為V、P,其內(nèi)切球半徑為R,則R=
故答案為R=
點評:本題考查類比推理,求解的關鍵是熟練掌握類比的規(guī)則以及平面與空間兩種圖形之間類比的對應的量.如:點類比線,線類比面,面類比體,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012屆浙江省溫州市高三八校聯(lián)考理科數(shù)學 題型:解答題


.本小題滿分15分)
如圖,已知橢圓E,焦點為、,雙曲線G的頂點是該橢圓的焦點,設是雙曲線G上異于頂點的任一點,直線、與橢圓的交點分別為A、BC、D,已知三角形的周長等于,橢圓四個頂點組成的菱形的面積為.

(1)求橢圓E與雙曲線G的方程;
(2)設直線、的斜率分別為,探求
的關系;
(3)是否存在常數(shù),使得恒成立?
若存在,試求出的值;若不存在, 請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省溫州市高三八校聯(lián)考理科數(shù)學 題型:解答題

 

.本小題滿分15分)

如圖,已知橢圓E,焦點為、,雙曲線G的頂點是該橢圓的焦點,設是雙曲線G上異于頂點的任一點,直線、與橢圓的交點分別為A、BC、D,已知三角形的周長等于,橢圓四個頂點組成的菱形的面積為.

 

(1)求橢圓E與雙曲線G的方程;

(2)設直線、的斜率分別為,探求

的關系;

(3)是否存在常數(shù),使得恒成立?

若存在,試求出的值;若不存在, 請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省高三下學期開學質量檢測數(shù)學試卷 題型:解答題

(本小題滿分14分)如圖,△ABC為一個等腰三角形形狀的空地,腰CA的長為3(百米),底AB的長為4(百米).現(xiàn)決定在該空地內(nèi)筑一條筆直的小路EF(寬度不計),將該空地分成一個四邊形和一個三角形,設分成的四邊形和三角形的周長相等、面積分別為S1和S2.

 

 

(1) 若小路一端E為AC的中點,求此時小路的長度;

(2) 求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題18分,第(1)小題4分;第(2)小題6分;第(3)小題8分)

如圖,已知橢圓E,焦點為,雙曲線G的頂點是該橢圓的焦點,設是雙曲線G上異于頂點的任一點,直線、與橢圓的交點分別為ABC、D,已知三角形的周長等于,橢圓四個頂點組成的菱形的面積為.

(1)求橢圓E與雙曲線G的方程;

(2)設直線、的斜率分別為,探求的關系;

(3)是否存在常數(shù),使得恒成立?若存在,試求出的值;若不存在,

請說明理由.

查看答案和解析>>

同步練習冊答案