分析 (1)根據(jù)題意,令x=1求出n的值,再利用通項公式求出展開式的常數(shù)項;
(2)令x=1,即可求出展開式中所有項的系數(shù)和.
解答 解:(1)對($\sqrt{x}$+$\frac{2}{x}$)n,所有二項式系數(shù)和為2n=512,
解得n=9;
設Tr+1為常數(shù)項,則:
Tr+1=C9r•${(\sqrt{x})}^{9-r}$•${(\frac{2}{x})}^{r}$=C9r2r${x}^{\frac{9-r}{2}-r}$,
由$\frac{9-r}{2}$-r=0,得r=3,
∴常數(shù)項為:C93•23=672;
(2)令x=1,得(1+2)9=39.
點評 本題考查了二項式展開式定理的應用問題,也考查了賦值法求展開式各項系數(shù)和的應用問題,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com