設(shè)N=2n(n∈N*,n≥2),將N個(gè)數(shù)x1,x2,…,xN依次放入編號(hào)為1,2,…,N的N個(gè)位置,得到排列P=x1x2…xN.將該排列中分別位于奇數(shù)與偶數(shù)位置的數(shù)取出,并按原順序依次放入對應(yīng)的前和后個(gè)位置,得到排列P1=x1x3…xN-1x2x4…xN,
將此操作稱為C變換,將P1分成兩段,每段個(gè)數(shù),并對每段作C變換,得到P2,當(dāng)2≤i≤n-2時(shí),將Pi分成2i段,每段個(gè)數(shù),并對每段作C變換,得到Pi+1,例如,當(dāng)N=8時(shí),P2=x1x5x3x7x2x6x4x8,此時(shí)x7位于P2中的第4個(gè)位置.
(1)當(dāng)N=16時(shí),x7位于P2中的第    個(gè)位置;
(2)當(dāng)N=2n(n≥8)時(shí),x173位于P4中的第    個(gè)位置.
【答案】分析:(1)由題意,可按照C變換的定義把N=16時(shí)P2列舉出,從中查出x7的位置即可;
(2)根據(jù)C變換的定義及歸納(1)中的規(guī)律可得出P4中所有的數(shù)字分為16段,每段的數(shù)字序號(hào)組成以16為公差的等差數(shù)列,且一到十六段的首項(xiàng)的序號(hào)分別為1,3,5,7,9,11,13,15,2,4,6,8,10,12,14,16,再173=16×10+13,即可確定出x173位于P4中的位置.
解答:解:(1)當(dāng)N=16時(shí),P=x1x2…x16.由C變換的定義可得P1=x1x3…x15x2x4…x16,
又將P1分成兩段,每段個(gè)數(shù),并對每段作C變換,得到P2,故P2=x1x5x9x13x3x7x11x15x2x6x10x14x4x8x12x16,由此知x7位于P2中的第6個(gè)位置;
(2)考察C變換的定義及(1)計(jì)算可發(fā)現(xiàn),第一次C變換后,所有的數(shù)分為兩段,每段的序號(hào)組成公差為2的等差數(shù)列,且第一段序號(hào)以1為首項(xiàng),第二段序號(hào)以2為首項(xiàng);第二次C變換后,所有的數(shù)據(jù)分為四段,每段的數(shù)字序號(hào)組成以4公差的等差數(shù)列,且第一段的序號(hào)以1為首項(xiàng),第二段序號(hào)以3為首項(xiàng),第三段序號(hào)以2為首項(xiàng),第四段序號(hào)以4為首項(xiàng),依此類推可得出P4中所有的數(shù)字分為16段,每段的數(shù)字序號(hào)組成以16為公差的等差數(shù)列,且一到十六段的首項(xiàng)的序號(hào)分別為1,9,5,13,…,由于173=16×10+13,故x173位于以13為首項(xiàng)的那一段的第11個(gè)數(shù),由于N=2n(n≥8)故每段的數(shù)字有2n-4個(gè),以13為首項(xiàng)的是第四段,故x173位于第3×2n-4+11=3×2n-4+11個(gè)位置.
故答案為3×2n-4+11
點(diǎn)評:本題考查演繹推理及歸納推理,解題的關(guān)鍵是理解新定義,找出其規(guī)律,本題是探究型題,運(yùn)算量大,極易出錯(cuò),解題進(jìn)要嚴(yán)謹(jǐn)認(rèn)真,避免馬虎出錯(cuò)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,a2=3,其前n項(xiàng)和Sn滿足Sn+1+Sn-1=2Sn+1(n≥2,n∈N*).
(Ⅰ)求證:數(shù)列{an}為等差數(shù)列,并求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2nan,求數(shù)列{bn}的前n項(xiàng)和Tn
(Ⅲ)設(shè)cn=4n+(-1)n-1λ•2an(λ為非零整數(shù),n∈N*),試確定λ的值,使得對任意n∈N*,有cn+1>cn恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)N=2n(n∈N*,n≥2),將N個(gè)數(shù)x1,x2,…,xN依次放入編號(hào)為1,2,…,N的N個(gè)位置,得到排列P0=x1x2…xN.將該排列中分別位于奇數(shù)與偶數(shù)位置的數(shù)取出,并按原順序依次放入對應(yīng)的前
N
2
個(gè)數(shù)和后
N
2
個(gè)位置,得到排列P1=x1x3…xN-1x2x4…xN,將此操作稱為C變換,將P1分成兩段,每段
N
2
個(gè)數(shù),并對每段作C變換,得到P2當(dāng)2≤i≤n-2時(shí),將Pi分成2i段,每段
N
2i
個(gè)數(shù),并對每段C變換,得到Pi+1,例如,當(dāng)N=8時(shí),P2=x1x5x3x7x2x6x4x8,此時(shí)x7位于P2中的第4個(gè)位置.當(dāng)N=16時(shí),x7位于P2中的第
6
6
個(gè)位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南)設(shè)N=2n(n∈N*,n≥2),將N個(gè)數(shù)x1,x2,…,xN依次放入編號(hào)為1,2,…,N的N個(gè)位置,得到排列P0=x1x2…xN.將該排列中分別位于奇數(shù)與偶數(shù)位置的數(shù)取出,并按原順序依次放入對應(yīng)的前
N
2
和后
N
2
個(gè)位置,得到排列P1=x1x3…xN-1x2x4…xN,
將此操作稱為C變換,將P1分成兩段,每段
N
2
個(gè)數(shù),并對每段作C變換,得到P2,當(dāng)2≤i≤n-2時(shí),將Pi分成2i段,每段
N
2i
個(gè)數(shù),并對每段作C變換,得到Pi+1,例如,當(dāng)N=8時(shí),P2=x1x5x3x7x2x6x4x8,此時(shí)x7位于P2中的第4個(gè)位置.
(1)當(dāng)N=16時(shí),x7位于P2中的第
6
6
個(gè)位置;
(2)當(dāng)N=2n(n≥8)時(shí),x173位于P4中的第
3×2n-4+11
3×2n-4+11
個(gè)位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)=
1
2
+log2
x
1-x
圖象上的任意兩點(diǎn),點(diǎn)M(
1
2
,y0)
為線段AB的中點(diǎn).
(1)求:y0的值.
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-2
n
)+f(
n-1
n
),  (n≥2,且n∈N*)
,求:Sn
(3)在 (2)的條件下,已知an=
2
3
                     (n=1) 
1
(Sn+1)(Sn+1+1)
 (n≥2)
,記Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<λ(Sn+1+1)對一切n∈N*都成立,求:λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(湖南卷解析版) 題型:填空題

設(shè)N=2nn∈N*,n≥2),將N個(gè)數(shù)x1,x2,…,xN依次放入編號(hào)為1,2,…,N的N個(gè)位置,得到排列P0=x1x2…xN.將該排列中分別位于奇數(shù)與偶數(shù)位置的數(shù)取出,并按原順序依次放入對應(yīng)的前和后個(gè)位置,得到排列P1=x1x3…xN-1x2x4…xN,將此操作稱為C變換,將P1分成兩段,每段個(gè)數(shù),并對每段作C變換,得到;當(dāng)2≤i≤n-2時(shí),將Pi分成2i段,每段個(gè)數(shù),并對每段C變換,得到Pi+1,例如,當(dāng)N=8時(shí),P2=x1x5x3x7x2x6x4x8,此時(shí)x7位于P2中的第4個(gè)位置.

(1)當(dāng)N=16時(shí),x7位于P2中的第___個(gè)位置;

(2)當(dāng)N=2n(n≥8)時(shí),x173位于P4中的第___個(gè)位置.

 

查看答案和解析>>

同步練習(xí)冊答案