(2013•虹口區(qū)二模)已知不等式組
x+y≤5
x-y≥1
y≥0
,則目標(biāo)函數(shù)f=x+2y的最大值是( 。
分析:畫出約束條件表示的可行域,判斷目標(biāo)函數(shù)f=x+2y的位置,求出最大值.
解答:解:作出約束條件
x+y≤5
x-y≥1
y≥0
,的可行域如圖,
目標(biāo)函數(shù)f=x+2y在
x+y=5
x-y=1
的交點A(3,2)處取最大值,最大值為f=3+2×2=7.
故答案為:7.
點評:本題考查簡單的線性規(guī)劃的應(yīng)用,正確畫出可行域,判斷目標(biāo)函數(shù)經(jīng)過的位置是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)二模)已知函數(shù)y=2sin(x+
π
2
)cos(x-
π
2
)
與直線y=
1
2
相交,若在y軸右側(cè)的交點自左向右依次記為M1,M2,M3,…,則|
M1M13
|
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)二模)在正方體ABCD-A1B1C1D1中與異面直線AB,CC1均垂直的棱有( 。l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)二模)已知復(fù)數(shù)zn=an+bn•i,其中an∈R,bn∈R,n∈N*,i是虛數(shù)單位,且zn+1=2zn+
.
zn
+2i
,z1=1+i.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求和:①z1+z2+…+zn;②a1b1+a2b2+…+anbn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)二模)函數(shù)f(x)=(2k-1)x+1在R上單調(diào)遞減,則k的取值范圍是
-∞,
1
2
-∞,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)二模)已知復(fù)數(shù)z=
(1-i)31+i
,則|z|=
2
2

查看答案和解析>>

同步練習(xí)冊答案