【題目】光伏發(fā)電是利用太陽(yáng)能電池及相關(guān)設(shè)備將太陽(yáng)光能直接轉(zhuǎn)化為電能,近幾年在國(guó)內(nèi)出臺(tái)的光伏發(fā)電補(bǔ)貼政策的引導(dǎo)下,某地光伏發(fā)電裝機(jī)量急劇上漲,如下表:
年份 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
年份代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
新增光伏裝機(jī)量兆瓦 | 0.4 | 0.8 | 1.6 | 3.1 | 6.1 | 7.1 | 9.7 | 12.2 |
某位同學(xué)分別用兩種模型:①,②進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,殘差圖如下(注:殘差等于)
經(jīng)過(guò)計(jì)算得,,,,其中,.
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個(gè)模型?并簡(jiǎn)要說(shuō)明理由.
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù)建立關(guān)于的回歸方程,并預(yù)測(cè)該地區(qū)2020年新增光伏裝機(jī)量是多少.(在計(jì)算回歸系數(shù)時(shí)精確到0.01)
附:歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為:,.
【答案】(1)選擇模型①,詳見(jiàn)解析(2);預(yù)測(cè)該地區(qū)2020年新增光伏裝機(jī)量為(兆瓦)
【解析】
(1)根據(jù)殘差圖分析,看模型的估計(jì)值和真實(shí)值之間的接近程度,越接近效果相對(duì)較好.
(2)由(1)可知,關(guān)于的回歸方程為,令,轉(zhuǎn)化為線(xiàn)性回歸分析,則回歸直線(xiàn)方程為.,根據(jù)提供的數(shù)據(jù)和公式求解直線(xiàn)方程,得到直線(xiàn)方程后,將2020提的年份代碼代入即可得到預(yù)測(cè)值.
(1)選擇模型①.
理由如下:根據(jù)殘差圖可以看出,模型①的估計(jì)值和真實(shí)值比較相近,模型②的殘差值相對(duì)較大一些,所以模型①的擬合效果相對(duì)較好.
(2)由(1)可知,關(guān)于的回歸方程為,
令,則.
由所給數(shù)據(jù)可得.
,
,
所以關(guān)于的回歸方程為
預(yù)測(cè)該地區(qū)2020年新增光伏裝機(jī)量為(兆瓦).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從四所高校中選2所.
(1)求甲、乙、丙三名同學(xué)都選高校的概率;
(2)若甲必選,記為甲、乙、丙三名同學(xué)中選校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在直三棱柱中,,平面,D為AC的中點(diǎn).
(1)求證:平面;
(2)求證:平面;
(3)設(shè)E是上一點(diǎn),試確定E的位置使平面平面BDE,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)有多個(gè)地方盛產(chǎn)板栗,但板栗的銷(xiāo)售受季節(jié)的影響,儲(chǔ)存時(shí)間不能太長(zhǎng).某校數(shù)學(xué)興趣小組對(duì)近幾年某食品銷(xiāo)售公司的板栗銷(xiāo)售量y(噸)和板栗的銷(xiāo)售單價(jià)x(元/千克)之間的關(guān)系進(jìn)行了調(diào)查,得到下表數(shù)據(jù):
銷(xiāo)售單價(jià)x(元/千克) | 11 | 10.5 | 10 | 9.5 | 9 | 8 |
銷(xiāo)售量y(噸) | 5 | 6 | 8 | 10 | 11 | 14.1 |
(1)根據(jù)前5組數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程;
(2)若線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.5,則認(rèn)為線(xiàn)性回歸方程是理想的,試問(wèn)(1)中得到的線(xiàn)性回歸方程是否理想?
(附:線(xiàn)性回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),討論的單調(diào)性;
(3)若對(duì)任意的,,恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠對(duì)一批產(chǎn)品進(jìn)行了抽樣檢測(cè).右圖是根據(jù)抽樣檢測(cè)后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是( ).
A. 90B. 75C. 60D. 45
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD的邊長(zhǎng)為7,點(diǎn)M在AB上,點(diǎn)N在BC上,且AM=BN=3,現(xiàn)有一束光線(xiàn)從點(diǎn)M射向點(diǎn)N,光線(xiàn)每次碰到正方形的邊時(shí)反射,則這束光線(xiàn)從第一次回到原點(diǎn)M時(shí)所走過(guò)的路程為( )
A. B. 60 C. D. 70
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線(xiàn)的焦點(diǎn)的直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),且,拋物線(xiàn)的準(zhǔn)線(xiàn)與軸交于,于點(diǎn),且四邊形的面積為,過(guò)的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),且,點(diǎn)為線(xiàn)段的垂直平分線(xiàn)與軸的交點(diǎn),則點(diǎn)的橫坐標(biāo)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn):與拋物線(xiàn)切于點(diǎn),直線(xiàn):過(guò)定點(diǎn)Q,且拋物線(xiàn)上的點(diǎn)到點(diǎn)Q的距離與其到準(zhǔn)線(xiàn)距離之和的最小值為.
(1)求拋物線(xiàn)的方程及點(diǎn)的坐標(biāo);
(2)設(shè)直線(xiàn)與拋物線(xiàn)交于(異于點(diǎn)P)兩個(gè)不同的點(diǎn)A、B,直線(xiàn)PA,PB的斜率分別為,那么是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com