已知函數(shù)y=2sin(2x+
π
4
),
(1)用五點(diǎn)作圖法做出該函數(shù)在一個(gè)周期內(nèi)的閉區(qū)間上的簡(jiǎn)圖;
(2)該函數(shù)是由函數(shù)y=sinx經(jīng)過(guò)怎樣的變換得到的?
考點(diǎn):五點(diǎn)法作函數(shù)y=Asin(ωx+φ)的圖象,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)根據(jù)五點(diǎn)法作圖,確定對(duì)應(yīng)的五點(diǎn)即可.
(2)根據(jù)三角函數(shù)之間的關(guān)系即可得到結(jié)論.
解答: 解:(1)五點(diǎn)作圖五點(diǎn)坐標(biāo)以此為:(-
π
8
,0),(
π
8
,2),(
8
,0),(
8
,-2
),(
8
,0
).
(2)y=sinx縱坐標(biāo)不變,沿x軸向左平移
π
4
個(gè)單位得到y=sin(x+
π
4
)

然后縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的
1
2
得到y=sin(2x+
π
4
)
,
橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍得到y=2sin(2x+
π
4
)
點(diǎn)評(píng):本題主要考查三角函數(shù)的圖象和性質(zhì),要求熟練掌握五點(diǎn)法作圖以及圖象之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y滿足約束條件
x+y-1≥0
y≥2x-2
y≤2
,且z=kx+y取得最小值是的點(diǎn)有無(wú)數(shù)個(gè),則k=( 。
A、-1B、2
C、-1或2D、1或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)判斷,正確的是( 。
①某校高二某兩個(gè)班的人數(shù)分別是m,n(m≠n),某次測(cè)試數(shù)學(xué)平均分分別是a,b(a≠b),則這兩個(gè)班的數(shù)學(xué)平均分為
a+b
2
;
②10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有a<b<c;
③從總體中抽取的樣本(x1,y2),(x2,y2),…(xn,yn),若記
.
x
=
1
n
n
i=1
xi
,
.
y
=
1
n
n
i=1
yi
,則回歸直線y=bx+a必過(guò)點(diǎn)(
.
x
,
.
y
);
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.1.
A、①②③B、①③④
C、②③④D、①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(3,2),
b
=(-2,3),則
a
b
的關(guān)系是( 。
A、
a
b
B、
a
b
C、
a
=
b
D、沒(méi)有關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log 
1
2
cosx,(-
π
2
<x<
π
2
)的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖為函數(shù)y=Asin(ωx+φ)+c(A>0,ω>0,0<φ<
π
2
)圖象的一部分.
(1)求此函數(shù)的解析式.
(2)求此函數(shù)的單調(diào)增區(qū)間及對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)函數(shù){an}滿足a1=1,an+12=an(an+4)+4,n∈N*,數(shù)列{bn}滿足b1=1,bn+1=-
1
bn+1
,n∈N*
(1)求{an}的通項(xiàng)公式;
(2)證明:存在正整數(shù)k,使得對(duì)一切n∈N*有bn+k=bn;
(3)求數(shù)列{anbn}的前3n項(xiàng)和S3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+
1
x
+(1-a)lnx.
(Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在x=1處的切線方程;
(Ⅱ)若a≤0,討論函數(shù)求f(x)的單調(diào)性;
(Ⅲ)若關(guān)于x的方程f(x)=ax在(0,1)上有兩個(gè)相異實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(
x
2
-
2
x
6的二項(xiàng)展開(kāi)式中,x2的系數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案