如圖2-17,若直線PAB、PCD分別與⊙O交于點(diǎn)A、B、C、D,則下列各式中正確的是(    )

圖2-17

A.PA∶PC=PB∶PD                        B.PA∶PB=AC∶BD

C.PA∶PC=PD∶PB                        D.PB∶PD=AD∶BC

解析:若A正確,則PA·PD=PC·PB,與割線定理矛盾.

∵∠PCA=∠ABD,∠P=∠P,

∴△PAC∽△PDB.

PA∶PB不是對(duì)應(yīng)邊,故B錯(cuò)誤.

由割線定理PA·PB=PC·PD,

∴PA∶PC=PD∶PB,故C正確.

答案:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線有光學(xué)性質(zhì):由其焦點(diǎn)射出的光線經(jīng)拋物線反象后,沿平行于拋物線對(duì)稱軸的肖向射出,反之亦然.如圖所示,今有拋物線C,其頂點(diǎn)是坐標(biāo)原點(diǎn),對(duì)稱輔為x軸.開口向右.一光源在點(diǎn)M處,由其發(fā)出一條平行于x軸的光線射向拋物線C卜的點(diǎn)P(4.4),經(jīng)拋物線C反射后,反射光線經(jīng)過焦點(diǎn)F后射向拋物線C上的點(diǎn)Q,再經(jīng)拋物線C反射后又沿平行于X軸的方向射出,途中經(jīng)直線l:2x-4y-17=0上點(diǎn)N反射后又射回點(diǎn)M.
(1)求拋物線C的方程;
(2)求PQ的長度;
(3)判斷四邊形MPQN是否為平行四邊形,若是請(qǐng)給出證明,若不是請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線l1和l2相交于點(diǎn)M且l1⊥l2,點(diǎn)N∈l1.以A、B為端點(diǎn)的曲線段C上的任一點(diǎn)到l2的距離與到點(diǎn)N的距離相等.若△AMN為銳角三角形,|AM|=
17
,|AN|=3,且|BN|=6.
(1)曲線段C是哪類圓錐曲線的一部分?并建立適當(dāng)?shù)淖鴺?biāo)系,求曲線段C所在的圓錐曲線的標(biāo)準(zhǔn)方程;
(2)在(1)所建的坐標(biāo)系下,已知點(diǎn)P(m,n)在曲線段C上,直線l:mx+ny=1,求直線l被圓x2+y2=1截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖2-1-17,空間四邊形SABC中,各邊及對(duì)角線長都相等,若E、F分別為SC、AB的中點(diǎn),那么異面直線EF與SA所成的角等于(    )

A.90°               B.60°             C.45°           D.30°

         圖2-1-17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖2-1-17,空間四邊形SABC中,各邊及對(duì)角線長都相等,若E、F分別為SC、AB的中點(diǎn),那么異面直線EF與SA所成的角等于(    )

A.90°               B.60°             C.45°           D.30°

圖2-1-17

查看答案和解析>>

同步練習(xí)冊(cè)答案