【題目】已知橢圓與拋物線(xiàn)共焦點(diǎn),拋物線(xiàn)上的點(diǎn)M到y軸的距離等于,且橢圓與拋物線(xiàn)的交點(diǎn)Q滿(mǎn)足.
(I)求拋物線(xiàn)的方程和橢圓的方程;
(II)過(guò)拋物線(xiàn)上的點(diǎn)作拋物線(xiàn)的切線(xiàn)交橢圓于、 兩點(diǎn),設(shè)線(xiàn)段AB的中點(diǎn)為,求的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)將拋物線(xiàn)上的點(diǎn)到軸的距離等于和拋物線(xiàn)的定義相結(jié)合,可得,可得拋物線(xiàn)的方程,已知在橢圓中的值,由可得點(diǎn)Q的坐標(biāo),結(jié)合橢圓的定義可得橢圓的方程;(2)聯(lián)立直線(xiàn)與拋物線(xiàn)的方程,結(jié)合其有一個(gè)交點(diǎn)可得關(guān)系式,聯(lián)立直線(xiàn)與橢圓的方程根據(jù)橢圓與直線(xiàn)有2個(gè)交點(diǎn)即,得到關(guān)于不等式,解不等式可得的取值范圍,由中點(diǎn)坐標(biāo)公式及韋達(dá)定理可得,從而可得其范圍.
試題解析:(1)∵拋物線(xiàn)上的點(diǎn)到軸的距離等于,
∴點(diǎn)M到直線(xiàn)的距離等于點(diǎn)到焦點(diǎn)的距離,
得是拋物線(xiàn)的準(zhǔn)線(xiàn),即,
解得,∴拋物線(xiàn)的方程為;
可知橢圓的右焦點(diǎn),左焦點(diǎn),
由得,又,解得,
由橢圓的定義得,
∴,又,得,
∴橢圓的方程為.
(2)顯然, ,
由,消去,得,
由題意知,得,
由,消去,得,
其中,
化簡(jiǎn)得,
又,得,解得,
設(shè),則<0,
由,得,∴的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】濰坊文化藝術(shù)中心的觀光塔是濰坊市的標(biāo)志性建筑,某班同學(xué)準(zhǔn)備測(cè)量觀光塔的高度(單位:米),如圖所示,垂直放置的標(biāo)桿的高度米,已知, .
(1)該班同學(xué)測(cè)得一組數(shù)據(jù): ,請(qǐng)據(jù)此算出的值;
(2)該班同學(xué)分析若干測(cè)得的數(shù)據(jù)后,發(fā)現(xiàn)適當(dāng)調(diào)整標(biāo)桿到觀光塔的距離(單位:米),使與的差較大,可以提高測(cè)量精確度,若觀光塔高度為136米,問(wèn)為多大時(shí), 的值最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求實(shí)數(shù)k的值;
(2)設(shè)g(x)=log4(a2x+a),若f(x)=g(x)有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=,DE=3,∠BAD=60,G為BC的中點(diǎn).
(1)求證:FG平面BED;
(2)求證:平面BED⊥平面AED;
(3)求直線(xiàn)EF與平面BED所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)在[0,+∞)上遞增,=0,已知g(x)=﹣f(|x|),滿(mǎn)足的x的取值范圍是( 。
A.(0,+∞)
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), 在和處取得極值,且,曲線(xiàn)在處的切線(xiàn)與直線(xiàn)垂直.
(Ⅰ)求的解析式;
(Ⅱ)證明關(guān)于的方程至多只有兩個(gè)實(shí)數(shù)根(其中是的導(dǎo)函數(shù), 是自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4x﹣2x+1+3,當(dāng)x∈[﹣2,1]時(shí),f(x)的最大值為m,最小值為n,
(1)若角α的終邊經(jīng)過(guò)點(diǎn)P(m,n),求sinα+cosα的值;
(2)g(x)=mcos(nx+)+n,求g(x)的最大值及自變量x的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是一個(gè)等差數(shù)列且a2+a8=﹣4,a6=2
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)fk(x)=xk+bx+c(k∈N* , b,c∈R),g(x)=logax(a>0,a≠1).
(1)若b+c=1,且fk(1)=g( ),求a的值;
(2)若k=2,記函數(shù)fk(x)在[﹣1,1]上的最大值為M,最小值為m,求M﹣m≤4時(shí)的b的取值范圍;
(3)判斷是否存在大于1的實(shí)數(shù)a,使得對(duì)任意x1∈[a,2a],都有x2∈[a,a2]滿(mǎn)足等式:g(x1)+g(x2)=p,且滿(mǎn)足該等式的常數(shù)p的取值唯一?若存在,求出所有符合條件的a的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com