11、曲線y=4x-x3在點(diǎn)(-1,-3)處的切線方程是
x-y-2=0
分析:欲求出切線方程,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在x=-1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問(wèn)題解決.
解答:解:∵y=4x-x3,
∴f'(x)=4-3x2,當(dāng)x=-1時(shí),f'(-1)=1得切線的斜率為1,所以k=1;
所以曲線在點(diǎn)(-1,-3)處的切線方程為:
y+3=1×(x+1),即x-y-2=0.
故答案為:x-y-2=0.
點(diǎn)評(píng):本小題主要考查直線的方程、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、曲線y=4x-x3在點(diǎn)(-1,-3)處的切線方程是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=4x-x3在橫坐標(biāo)為-1的點(diǎn)處的切線為l,則點(diǎn)P(3,2)到直線l的距離為( 。
A、
2
2
B、
2
C、
7
2
2
D、
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、曲線y=4x-x3在點(diǎn)(-1,f(-1))處的切線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

①函數(shù)f(x)=-
1
x
+lgx
的零點(diǎn)所在的區(qū)間是(2,3);②曲線y=4x-x3在點(diǎn)(-1,-3)處的切線方程是y=x-2;③將函數(shù)y=2x+1的圖象按向量a=(1,-1)平移后得到函數(shù)y=2x+1的圖象;④函數(shù)y=
lo
g
(x2-1)
1
2
的定義域是(-
2
,-1)∪(1,
2
)⑤
a
b
>0是
a
b
的夾角為銳角的充要條件;以上命題正確的是
①②
①②
.(注:把你認(rèn)為正確的命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案