如圖,在直三棱柱ABC-A1B1C1中,底面△ABC為等腰直角三角形,∠B = 900,D為棱BB1上一點,且面DA1 C⊥面AA1C1C.求證:D為棱BB1中點;(2)為何值時,二面角A -A1D - C的平面角為600.
(1)見解析;(2).
【解析】
試題分析:(1)過點D作DE ⊥ A1 C 于E點,取AC的中點F,連BF ﹑EF,先證直線DE⊥面AA1C1C,再證BF⊥面AA1C1C,得D,E,F,B共面,再證DB∥EF ,從而有EF∥AA1,易得所證結論;(2)法1:建立空間直角坐標系,找出所需點的坐標,分別設出面DA1C和平面AA1DB的法向量,并列方程計算出來,再利用向量的數量積計算兩向量的夾角的余弦值,便可得得值;法2:延長A1 D與直線AB相交于G,易知CB⊥面AA1B1B,過B作BH⊥A1 G于點H,連CH,證明∠CHB為二面角A -A1D - C的平面角,在CHB中,根據條件計算的表達式,可得結論.
試題解析:(1)過點D作DE ⊥ A1 C 于E點,取AC的中點F,連BF ﹑EF.
∵面DA1 C⊥面AA1C1C且相交于A1 C,面DA1 C內的直線DE ⊥ A1 C,∴直線DE⊥面AA1C1C ,3分
又∵面BA C⊥面AA1C1C且相交于AC,易知BF⊥AC,∴BF⊥面AA1C1C
由此知:DE∥BF ,從而有D,E,F,B共面,又易知BB1∥面AA1C1C,故有DB∥EF ,從而有EF∥AA1,
又點F是AC的中點,所以DB = EF = AA1 = BB1,所以D點為棱BB1的中點; 6分
(2)解法1:建立如圖所示的直角坐標系,設AA1 = 2b ,AB=BC = ,則D(0,0,b), A1 (a,0,2b), C (0,a,0), 7分
所以, , 8分
設面DA1C的法向量為則 可取,
又可取平面AA1DB的法向量,
cos〈〉, 10分
據題意有:, 12分
解得: = . 13分
解法2:延長A1 D與直線AB相交于G,易知CB⊥面AA1B1B,
過B作BH⊥A1 G于點H,連CH,由三垂線定理知:A1 G⊥CH,
由此知∠CHB為二面角A -A1D - C的平面角; 9分
設AA1 = 2b ,AB=BC =;在直角三角形A1A G中,易知AB = BG.
在DBG中,BH = = , 10分
在CHB中,tan∠CHB = = ,
據題意有: = tan600 = ,
解得:所以 = . 13分
考點:1、面面垂直的性質;2、二面角;3、利用空間向量解決幾何問題.
科目:高中數學 來源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數學 來源:2011年四川省招生統(tǒng)一考試理科數學 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]
P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數學 來源:2011年高考試題數學理(四川卷)解析版 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一
P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數學 來源:四川省高考真題 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com