求數(shù)列333,333,…的前n項(xiàng)和.

答案:略
解析:

解:∵,


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前三項(xiàng)為3x-1,2x+6,33-x(x∈R).
(1)求通項(xiàng)公式an;
(2)求當(dāng)n為何值時(shí),前n項(xiàng)和Sn最大.
(3)令bn=an•2n-1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是等差數(shù)列,其前n項(xiàng)和為Sn,已知S7=63,a4+a5+a6=33,
(1)寫(xiě)出數(shù)列{an}的通項(xiàng)公式;
(2) 求數(shù)列bn=2an+n,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3) 求證:
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}單調(diào)遞增,且滿足:a1+a6=33,a3a4=32.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足:b1=1且n≥2時(shí),a2,abn,a2n-2成等比數(shù)列,Tn為{bn}前n項(xiàng)和,cn=
Tn+1
Tn
+
Tn
Tn+1
,證明:2n<c1+c2+…+cn<2n+3(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

求數(shù)列3,33,333,…的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案