17.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù));在極坐標(biāo)系中(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸),拋物線C的極坐標(biāo)方程為ρcos2θ=sinθ.
(1)將拋物線C的極坐標(biāo)方程化為直角坐標(biāo)方程.
(2)若直線l與拋物線C相交于A,B兩點(diǎn),求線段AB的長.

分析 (1)拋物線C的極坐標(biāo)方程為ρcos2θ=sinθ,即ρ2cos2θ=ρsinθ,利用x=ρcosθ,y=ρsinθ即可把極坐標(biāo)方程化為直角坐標(biāo)方程.
(2)把直線l的參數(shù)方程$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))代入拋物線方程可得:t2+$\sqrt{2}$t-2=0,利用根與系數(shù)的關(guān)系及其|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$即可得出.

解答 解:(1)拋物線C的極坐標(biāo)方程為ρcos2θ=sinθ,
即ρ2cos2θ=ρsinθ,
化為直角坐標(biāo)方程:x2=y.
(2)把直線l的參數(shù)方程$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))代入拋物線方程可得:t2+$\sqrt{2}$t-2=0,
∴t1+t2=-$\sqrt{2}$,t1t2=-2.
∴|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(-\sqrt{2})^{2}-4×(-2)}$=$\sqrt{10}$.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、直線與拋物線相交弦長問題、直線參數(shù)方程的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.一個(gè)蜂巢有1只蜜蜂,第1天,它飛出去找回了5個(gè)伙伴;第2天,6只蜜蜂飛出去,各自找回了5個(gè)伙伴…如果這個(gè)找伙伴的過程繼續(xù)下去,第5天所有的蜜蜂都?xì)w巢后,蜂巢中一共有7776只蜜蜂.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x+1|-|x-3|.
(Ⅰ)解不等式f(x)≥1;
(Ⅱ)若存在x∈R,使f(x)>|2a-4|,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線C上的點(diǎn)按坐標(biāo)變換$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{2}x}\\{{y}^{′}=\frac{1}{3}y}\end{array}\right.$,得到曲線C′.
(1)求曲線C′的普通方程;
(2)若點(diǎn)A在曲線C′上,點(diǎn)D(0,2),當(dāng)點(diǎn)A在曲線C′上運(yùn)動(dòng)時(shí),求AD中點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知下列點(diǎn)的直角坐標(biāo),求它們的極坐標(biāo):
(1)D(0,-2);(2)E(-3,-3);(3)E(-5,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.極坐標(biāo)方程ρcosθ=sin2θ(θ≥0)表示的曲線是(  )
A.一個(gè)圓B.兩條射線或一個(gè)圓
C.兩條直線D.一條射線或一個(gè)圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.長方體ABCD-A1B1C1D1中,AB=2AD=2AA1=2,P為A1B1中點(diǎn).
(Ⅰ)求證:CP⊥平面AD1P;
(Ⅱ)求點(diǎn)P到平面ACD1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l:y=kx+1與圓C:(x-2)2+(y-3)2=1相交于A,B兩點(diǎn)
(1)求弦AB的中點(diǎn)M的軌跡方程;
(2)若O為坐標(biāo)原點(diǎn),S(k)表示△OAB的面積,若f(k)=[S(k)•(k2+1)]2,求f(k)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知C為AB為直徑的圓O上任意一點(diǎn),且△SAC為等邊三角形,平面SAC⊥平面ABC.
(1)求證:BC⊥SA;
(2)求二面角A-BC-S所成角的大;
(3)若AC=2,SB=2$\sqrt{3}$,求直線SB與平面ABC所成角.

查看答案和解析>>

同步練習(xí)冊(cè)答案