命題p:?x∈R,sinx-cosx<
2
,命題q:“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的充分條件,則下列命題中,真命題是( 。
A、(¬q)∨p
B、p∧q
C、(¬p)∧(¬q)
D、(¬p)∨(¬q)
考點:復合命題的真假
專題:簡易邏輯
分析:判斷p,q的真假,利用復合命題的真假關系,即可得到結論.
解答: 解:當x=
4
時,sinx-cosx=sin
4
-cos
4
=
2
2
+
2
2
=
2
,則命題p為假命題,
當a=1時,直線可化為x+2y-1=0和x+2y+4=0,顯然平行;
若直線ax+2y-1=0和直線x+(a+1)y+4=0平行,
當a=0,兩直線為2y=1和x+y+4=0,直線相交,不成立.
當a≠0,若直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行,
1
a
=
a+1
2
4
-1
,
解得a=1或a=-2,
故:“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的充分條件,
所以q為真命題,
則(¬p)∨(¬q)為真命題,
故選:D.
點評:本題主要考查命題在真假判段,以及復合命題真假關系在判斷,比較綜合.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)(x∈D)同時滿足下列條件:
①f(x)在D內(nèi)為單調(diào)函數(shù);
②f(x)的值域為D的子集,則稱此函數(shù)為D內(nèi)的“保值函數(shù)”.
(Ⅰ)f(x)=
2x+b-4
ln2
是[1,+∞)內(nèi)的“保值函數(shù)”,則b的最小值為
 
;
(Ⅱ)當-1≤a≤1,且a≠0,-1≤b≤1時,g(x)=ax2+b是[0,1]內(nèi)的“保值函數(shù)”的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學習小組男女生共8人,現(xiàn)從男生中選2人,女生中選1人,分別去做3中不同的工作,共有90種不同的選法,則男女生人數(shù)為( 。
A、2,6B、3,5
C、5,3D、6,2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合 A={x|x2+x-2<0},B={-2,-1,0,1,2},則A∩B=( 。
A、{-2,-1,0,1}
B、{-1,0,1}
C、{0,1}
D、{-1,0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={x|x2+x-6<0},B={y|y=lg(x2+1)},則A∩B等于( 。
A、(-3,2)
B、[0,3)
C、[0,+∞)
D、[0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的首項a1=1,公差d=2,則a4=(  )
A、5B、6C、7D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙、丙3位志愿者安排在周一至周五的5天中參加某項志愿者活動,要求每人參加一天且每天至多安排一人,現(xiàn)要求甲安排在另外兩位前面且丙不安排在周五,則不同的安排方法共有( 。
A、14種B、16種
C、20種D、24種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(3π+α)=2sin(
2
+α),求下列各式的值.
(1)
sinα-4cosα
5sinα+2cosα
;
(2)sin2α+sin2α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的極坐標方程為ρsin(θ+
π
4
)=
2
2
,圓C的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù))
(Ⅰ)判斷直線l圓C的位置關系;
(Ⅱ)若橢圓的參數(shù)方程為
x=2cosφ
y=
3
sinφ
(φ為參數(shù)),過圓C的圓心且與直線l垂直的直線l′與橢圓相交于兩點A、B,求|CA|•|CB|.

查看答案和解析>>

同步練習冊答案