已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=數(shù)學(xué)公式x2+2ax,g(x)=3a2lnx+b,其中a>0.設(shè)兩曲線y=f(x),y=g(x)有公共點(diǎn),且在該點(diǎn)處的切線相同.
(Ⅰ)用a表示b,并求b的最大值;
(Ⅱ)求證:f(x)≥g(x)。▁>0).

解:(Ⅰ)設(shè)y=f(x)與y=g(x)(x>0)在公共點(diǎn)(x0,y0)處的切線相同.
∵f'(x)=x+2a,,由題意f(x0)=g(x0),f'(x0)=g'(x0).
得:x0=a,或x0=-3a(舍去).
即有
,則h'(t)=2t(1-3lnt).
于是當(dāng)t(1-3lnt)>0,即時(shí),h'(t)>0;當(dāng)t(1-3lnt)<0,即時(shí),h'(t)<0.
故h(t)在為增函數(shù),在為減函數(shù),
于是h(t)在(0,+∞)的最大值為
(Ⅱ)設(shè),
則F'(x)=
故F(x)在(0,a)為減函數(shù),在(a,+∞)為增函數(shù),
于是函數(shù)F(x)在(0,+∞)上的最小值是F(a)=F(x0)=f(x0)-g(x0)=0.
故當(dāng)x>0時(shí),有f(x)-g(x)≥0,即當(dāng)x>0時(shí),f(x)≥g(x).
分析:(Ⅰ)設(shè)出兩曲線的公共點(diǎn)坐標(biāo),分別求出f(x)和g(x)的導(dǎo)函數(shù),把設(shè)出點(diǎn)的坐標(biāo)代入兩導(dǎo)函數(shù)中得到兩關(guān)系式,聯(lián)立兩關(guān)系式即可解出公共點(diǎn)的橫坐標(biāo),把求出的橫坐標(biāo)代入得到用a表示出b的式子,設(shè)h(t)等于表示出的式子,求出h(t)的導(dǎo)函數(shù),令導(dǎo)函數(shù)大于0求出t的范圍即為函數(shù)的增區(qū)間,令導(dǎo)函數(shù)小于0求出x的范圍即為函數(shù)的減區(qū)間,根據(jù)函數(shù)的增減性即可求出h(t)的最大值即為b的最大值;
(Ⅱ)設(shè)F(x)=f(x)-g(x),求出F(x)的導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的正負(fù)得到F(x)的單調(diào)區(qū)間,由x大于0和函數(shù)的增減性得到F(x)的最小值為0,即f(x)-g(x)大于等于0,得證.
點(diǎn)評:本小題主要考查函數(shù)、不等式和導(dǎo)數(shù)的應(yīng)用等知識,考查綜合運(yùn)用數(shù)學(xué)知識解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=x2+4ax+1,g(x)=6a2lnx+2b+1,其中a>0.
(Ⅰ)設(shè)兩曲線y=f(x),y=g(x)有公共點(diǎn),且在該點(diǎn)處的切線相同,用a表示b,并求b的最大值;
(Ⅱ)設(shè)h(x)=f(x)+g(x),證明:若a≥
3
-1
,則對任意x1,x2∈(0,+∞),x1≠x2
h(x2)-h(x1)
x2-x1
>8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=
12
x2+2ax
,g(x)=3a2lnx+b,其中a>0,設(shè)兩曲線y=f(x),y=g(x)有公共點(diǎn),且在該點(diǎn)處的切線相同.
(Ⅰ)用a表示b,并求b的最大值;
(Ⅱ)求證:f(x)≥g(x)(x>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在正實(shí)數(shù)集上的函數(shù)f(x)滿足①若x>1,則f(x)<0;②f(
12
)
=1;③對定義域內(nèi)的任意實(shí)數(shù)x,y,都有:f(xy)=f(x)+f(y),則不等式f(x)+f(5-x)≥-2的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在正實(shí)數(shù)集上的連續(xù)函數(shù)f(x)=
1
1-x
+
2
x2-1
(0<x<1)
x+a   (x≥1)
,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•河西區(qū)二模)已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=
3x22
+ax,g(x)=4a2lnx+b,其中a>0,設(shè)兩曲線x=f(x)與f=g(x)有公共點(diǎn),且在公共點(diǎn)處的切線相同.
(I)若a=1,求兩曲線y=f(x)與y=g(x)在公共點(diǎn)處的切線方程;
(Ⅱ)用a表示b,并求b的最大值.

查看答案和解析>>

同步練習(xí)冊答案