精英家教網 > 高中數學 > 題目詳情
在空間四邊形ABCD的邊AB、BC、CD、DA上分別取E、F、G、H四點,如果EF與HG交于點M,那么( )
A.M一定在直線AC上
B.M一定在直線BD上
C.M可能在直線AC上,也可能在直線BD上
D.M既不在直線AC上,也不在直線BD上
【答案】分析:由公理2知,不共線的三點確定一個平面,由于ABCD是空間四邊形,故AB,BC確定平面ABC,CD,DA確定平面ACD,再由公理1,3可得M的位置.
解答:解:由于ABCD是空間四邊形,故AB,BC確定平面ABC,CD,DA確定平面ACD.
∵E∈AB,F(xiàn)∈BC,G∈CD,H∈DA
∴EF?面ABC,GH?面ACD∵EF∩GH=M∴M∈面ABC,M∈面ACD 
∵面ABC∩面ACD=AC
∴M∈AC
故選A.
點評:本題主要考查空間點,線,面的位置關系,靈活應用公理1,公理2,公理3判斷點線面的位置關系的能力,是個基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

8、在空間四邊形ABCD的各邊AB,BC,CD,DA上依次取點E,F(xiàn),G,H,若EH、FG所在直線相交于點P,則(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

在空間四邊形ABCD的邊AB,BC,CD,DA上分別取E,F(xiàn),G,H使
AE
EB
=
AH
HD
=1,
CF
FB
=
CG
GD
=
1
2
,則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

在空間四邊形ABCD中,連接AC、BD,若△BCD是正三角形,且E為其中心,則
AB
+
1
2
BC
-
3
2
DE
-
AD
化簡后的結果為(  )
A、
AB
B、2
BD
C、
0
D、2
DE

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•順義區(qū)一模)如圖,已知在空間四邊形ABCD中,AB=AC=DB=DC,E為BC的中點.
(Ⅰ)求證:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求幾何體ABCD的體積;
(Ⅲ)在(Ⅱ)的條件下,若G為△ABD的重心,試問在線段BC上是否存在點F,使GF∥平面ADE?若存在,請指出點F在BC上的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

在空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點.若AC=BD=a,若四邊形EFGH的面積為
3
8
a2
,則異面直線AC與BD所成的角為( 。
A、30°B、60°
C、120°D、60°或120°

查看答案和解析>>

同步練習冊答案