(本題滿分10分)已知?jiǎng)狱c(diǎn)P與平面上兩定點(diǎn)連線的斜率的積為定值.

(Ⅰ)試求動(dòng)點(diǎn)P的軌跡方程C.

(Ⅱ)設(shè)直線與曲線C交于M、N兩點(diǎn),當(dāng)|MN|=時(shí),求直線l的方程.

解:設(shè)點(diǎn),則依題意有,…………………3分

整理得由于,所以求得的曲線C的方程為………………………………………5分

(Ⅱ)由

解得x1=0, x2=分別為M,N的橫坐標(biāo)).………………………9分

 ……………………………………………………………………11分

所以直線l的方程xy+1=0或x+y-1=0.………………………………………12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分10分)

已知向量,其中

(1)試判斷向量能否平行,并說(shuō)明理由?

(2)求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分10分)  已知是一次函數(shù),且滿足,求函數(shù)的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河南大學(xué)附屬中學(xué)(本部)高一上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本題滿分10分)

已知函數(shù).

①求的單調(diào)區(qū)間;

②求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江西省高一上學(xué)期第一次月考數(shù)學(xué)卷 題型:解答題

(本題滿分10分)

 已知函數(shù).

(1)若函數(shù)是偶函數(shù),求函數(shù)在區(qū)間上的最大值和最小值;

(2)要使函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年新疆農(nóng)七師高級(jí)中學(xué)高一第二學(xué)期第二階段考試數(shù)學(xué)試題 題型:解答題

(本題滿分10分)已知=m,a∥,a∥,求證:a∥m

 

查看答案和解析>>

同步練習(xí)冊(cè)答案