15.已知$p:-2≤1-\frac{x-1}{3}≤2,q:({x+m-1})({x-m-1})≤0({m>0})$,且q是p的必要不充分條件,求實(shí)數(shù)m的取值范圍.

分析 解出關(guān)于p,q的不等式,根據(jù)充分必要條件的定義頂頂頂關(guān)于m的不等式組,解出即可.

解答 解:∵$p:-2≤1-\frac{x-1}{3}≤2,q:({x+m-1})({x-m-1})≤0({m>0})$,
∴p:-2≤x≤10,q:1-m≤x≤1+m,(m>0),
∵q是p的必要不充分條件,
∴$\left\{{\begin{array}{l}{1-m≤-2}\\{1+m≥10}\end{array}}\right.$,
∴m≥9.

點(diǎn)評(píng) 本題考查了充分必要條件,考查不等式的解法,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.下列關(guān)于f(x)的命題:
①函數(shù)f(x) 在x=0,4處取到極大值;
②函數(shù)f(x)在區(qū)間[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a不可能有3個(gè)零點(diǎn).
其中所有真命題的序號(hào)是( 。
A.①②B.①②③C.①②④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)$f(x)=\frac{1}{2}{x^2}+m({x+1})+lnx$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)存在兩個(gè)極值點(diǎn)α,β,且α<β,若f(α)<b+1恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求適合下列條件的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)在x軸上,與橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$具有相同的離心率且過(guò)點(diǎn)(2,-$\sqrt{3}$)的橢圓的標(biāo)準(zhǔn)方程;
(2)焦點(diǎn)在y軸上,焦距是16,離心率$e=\frac{4}{3}$的雙曲線標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}2x-y≤0\\ x-3y+5≥0\\ x>0\\ y>0\end{array}\right.$,則z=2x+y的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≥2\\ 2x+y≥2\\ x-y≤2\end{array}\right.$目標(biāo)函數(shù)z=x-2y的最大值是( 。
A.-4B.2C.$\frac{8}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.將y=cosx的圖象上的所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來(lái)的一半,然后再將圖象沿x軸負(fù)方向平移$\frac{π}{4}$個(gè)單位,則所得圖象的解析式為( 。
A.y=sinxB.y=-sin2xC.$y=cos({2x+\frac{π}{4}})$D.$y=cos({\frac{x}{2}+\frac{π}{4}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知雙曲線mx2+y2=1(m∈R)與橢圓${x^2}+\frac{y^2}{5}=1$有相同的焦點(diǎn),則該雙曲線的漸近線方程為( 。
A.$y=±\sqrt{3}x$B.$y=±\frac{{\sqrt{3}}}{3}x$C.$y=±\frac{1}{3}x$D.y=±3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.從二項(xiàng)式(1+x)11的展開(kāi)式中取一項(xiàng),系數(shù)為奇數(shù)的概率是$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案