【題目】已知圓,直線.

(1)判斷直線與圓C的位置關(guān)系;

2)若定點(diǎn)P(1,1)分弦AB為,求此時(shí)直線的方程.

【答案】(1)相交2.

【解析】

試題分析:(1)由圓的方程得到圓心坐標(biāo)和半徑,然后由點(diǎn)到直線的距離公式得到圓心到直線的距離,利用不等式放縮后得到圓心到直線的距離和半徑的關(guān)系,從而得到答案;(2)把線段的長(zhǎng)度比轉(zhuǎn)化為兩個(gè)想兩件的關(guān)系,由向量的坐標(biāo)運(yùn)算得到A,B兩點(diǎn)橫坐標(biāo)間的關(guān)系,聯(lián)立直線與圓的方程化為關(guān)于x的一元二次方程,由根與系數(shù)關(guān)系得到A,B兩點(diǎn)橫坐標(biāo)的和,求出其中一點(diǎn)的橫坐標(biāo),最后再代入關(guān)于x的方程得到關(guān)于m的方程,求解得到m的值,則直線方程可求

試題解析:(1)圓的圓心為,半徑為。

圓心C到直線的距離

直線與圓C相交;

(2)設(shè),由得,

,化簡(jiǎn)的………①

又由消去……(*)

…………②

①②解得,帶入(*)式解得,

直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一批產(chǎn)品中取出兩件產(chǎn)品,事件 至少有一件是次品的對(duì)立事件是

A.至多有一件是次品B.兩件都是次品

C.只有一件是次品D.兩件都不是次品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,點(diǎn),角的內(nèi)角平分線所在直線的方程為邊上的高所在直線的方程為.

(Ⅰ) 求點(diǎn)的坐標(biāo);

(Ⅱ) 求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中錯(cuò)誤的是(

A.在三角形中,已知兩邊及其一邊的對(duì)角,不能用余弦定理求解三角形

B.余弦定理揭示了任意三角形邊角之間的關(guān)系,因此它適用于任何三角形

C.利用余弦定理,可以解決已知三角形三邊求角的問題

D.在三角形中,勾股定理是余弦定理的特例

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,過點(diǎn)的直線與拋物線相交于點(diǎn)兩點(diǎn),設(shè),

(1)求證:為定值

(2)是否存在平行于軸的定直線被以為直徑的圓截得的弦長(zhǎng)為定值?如果存在,求出該直線方程和弦長(zhǎng),如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地政府為科技興市,欲將如圖所示的一塊不規(guī)則的非農(nóng)業(yè)用地規(guī)劃建成一個(gè)矩形的高科技工業(yè)園區(qū).已知,,曲線是以點(diǎn)為頂點(diǎn)的且開口向上的拋物線的一段,如果要使矩形的相鄰兩邊分別落在,且一個(gè)頂點(diǎn)落在曲線段,問矩形的兩邊長(zhǎng)分別為多少時(shí)使矩形工業(yè)園區(qū)的用地面積最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐A-BOC中,OA底面BOC,OAB=OAC=30°,AB=AC=4,BC=,動(dòng)點(diǎn)D在線段AB上.

1求證:平面COD平面AOB;

2當(dāng)ODAB時(shí),求三棱錐C-OBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,首項(xiàng), .

(1)求證:數(shù)列是等比數(shù)列;

(2)求數(shù)列的通項(xiàng)公式以及前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在處每投進(jìn)一球得3分;在處每投進(jìn)一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次.某同學(xué)在處的投中率,在處的投中率為,該同學(xué)選擇先在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:

0

2

3

4

5

0.03

(1)求的值;

(2)求隨機(jī)變量的數(shù)學(xué)期望;

(3)試比較該同學(xué)選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案