若曲線y=x4-x在點P處的切線垂直于直線x+3y=0,則點P的坐標(biāo)是
 
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出原函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)等于3求得P點的橫坐標(biāo),代入原函數(shù)得答案.
解答: 解:∵f(x)=x4-x,
∴f′(x)=4x3-1,
∵切線與直線x+3y=0垂直,
∴切線的斜率為3,即k=3;
∴4x3-1=3,
∴x=1,
點P的坐標(biāo)是(1,0).
故答案為:(1,0).
點評:本題考查了導(dǎo)數(shù)的運算以及導(dǎo)數(shù)與斜率的關(guān)系,比較容易,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin4x-cos4x+2
3
sinxcosx+a
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)把y=f(x)圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再把所得圖象上所有點向左平行移動
π
3
個單位長度,得到y(tǒng)=g(x)的圖象,求函數(shù)y=g(x)的解析式;
(Ⅲ)y=g(x)在[0,
π
2
]上最大值與最小值之和為3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2a-2<x<a},B={x|
3
x-1
≥1},且A⊆∁RB,
(1)求集合∁RB;      
(2)求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C:y=cosx+lnx+2在x=
π
2
處的切線斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a+bx
x
,g(x)=ax.
(Ⅰ)當(dāng)a=b=1時,利用函數(shù)單調(diào)性的定義證明f(x)在區(qū)間(0,+∞)上是單調(diào)減函數(shù);
(Ⅱ)若函數(shù)f(x)+g(x)在區(qū)間(1,+∞)上是單調(diào)增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的定義域.
①y=
2-x
+
1
x+1
;
②y=
x+2
|x|-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax(a≠0),g(x)=lnx,f(x)圖象與x軸異于原點的交點M處的切線為l1,g(x-1)與x軸的交點N處的切線為l2,并且l1與l2平行.
(1)求f(2)的值;
(2)已知實數(shù)t≥
1
2
,求u=xlnx,x∈[1,e]的取值范圍及函數(shù)y=f(u+t)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=0且Sn+1=2Sn+
1
2
n(n+1),(n∈N*
(Ⅰ)求a2,a3,并證明:an+1=2an+n,(n∈N*);
(Ⅱ)設(shè)bn=an+1-an(n∈N*),求證:bn+1=2bn+1;
(Ⅲ)求數(shù)列{an}(n∈N*)的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(0,1)的直線與圓x2+y2=4相交于A,B兩點,則|AB|的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案