分析 (Ⅰ)連結(jié)AC1,設(shè)AC1∩A1C=E,連結(jié)DE,則E是AC1的中點(diǎn),由三角形中位線定理可得DE∥BC1,再由線面平行的判定可得BC1∥平面A1CD;
(Ⅱ)由已知可得A1A⊥AC,A1A⊥AB,再由線面垂直的判定可得A1A⊥平面ABC,由多面體CA1C1BD的體積$V={V_{ABC-{A_1}{B_1}{C_1}}}-{V_{{A_1}-ACD}}-{V_{B-{A_1}{B_1}{C_1}}}$求得多面體CA1C1BD的體積.
解答 (Ⅰ)證明:連結(jié)AC1,設(shè)AC1∩A1C=E,連結(jié)DE,則E是AC1的中點(diǎn),
∵D是AB的中點(diǎn),∴DE∥BC1,
又DE?平面A1CD,BC?平面A1CD,
∴BC1∥平面A1CD;
(Ⅱ)解:∵四邊形CAA1C1是正方形,∴A1A⊥AC,
又∵BAA1B1都是正方形,∴A1A⊥AB,
又AC?平面ABC,AB?平面ABC,AB∩AC=A,∴A1A⊥平面ABC,
∵${S_{△ABC}}={S_{△{A_1}{B_1}{C_1}}}=\frac{{\sqrt{3}}}{4}×{2^2}=\sqrt{3}$,∴${S_{△ACD}}=\frac{1}{2}{S_{△ABC}}=\frac{{\sqrt{3}}}{2}$.
∴多面體CA1C1BD的體積$V={V_{ABC-{A_1}{B_1}{C_1}}}-{V_{{A_1}-ACD}}-{V_{B-{A_1}{B_1}{C_1}}}$
=${S}_{△ABC}•A{A}_{1}-\frac{1}{3}{S}_{△ACD}•A{A}_{1}-\frac{1}{3}{S}_{△{A}_{1}{B}_{1}{C}_{1}}•B{B}_{1}$=$\sqrt{3}×2-\frac{1}{3}×\frac{{\sqrt{3}}}{2}×2-\frac{1}{3}×\sqrt{3}×2$=$\sqrt{3}$.
∴多面體CA1C1BD的體積為$\sqrt{3}$.
點(diǎn)評 本題考查直線與平面平行的判定,考查空間想象能力和思維能力,訓(xùn)練了利用等積法求多面體的體積,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-∞,-\sqrt{2}})$ | B. | $({-∞,\sqrt{2}})$ | C. | $({-∞,2\sqrt{2}})$ | D. | $({-2\sqrt{2},\frac{{\sqrt{2}}}{2}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i>5? | B. | i>3? | C. | i>6? | D. | i>4? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\sqrt{5}$-i | B. | $\sqrt{5}$-i | C. | i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 200 | B. | 300 | C. | $\frac{500}{3}$ | D. | 400 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com