已知數(shù)列滿足:(其中常數(shù)).
(1)求數(shù)列的通項公式;
(2)當時,數(shù)列中是否存在不同的三項組成一個等比數(shù)列;若存在,求出滿足條件的三項,若不存在,說明理由。

(1)(2)不存在這樣的三項使其組成等比數(shù)列

解析試題分析:(1)當時,,
時,因為
所以:
兩式相減得到:,即,又,
所以數(shù)列的通項公式是;
(2)當時,,假設存在成等比數(shù)列,

整理得
由奇偶性知r+t-2s=0.
所以,即,這與矛盾,
故不存在這樣的正整數(shù),使得成等比數(shù)列.   
考點:數(shù)列求通項及等比數(shù)列
點評:第一小題是由數(shù)列的前n項和求通項,需注意分兩種情況討論,第二小題探索性題目,先假設滿足題意要求的項存在,看是否能推得矛盾,若無矛盾則假設成立,反之假設不成立

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列中,,.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,數(shù)列的前項和為,若不等式對一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

各項均為正數(shù)的等比數(shù)列{an}中,已知a2="8," a4="128," bn=log2a.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Sn
(3)求滿足不等式的正整數(shù)n的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列的前項和為,
( 1 )若,求;
( 2 ) 若,證明是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足: ().
(1)求的值;
(2)求證:數(shù)列是等比數(shù)列;
(3)令,,如果對任意,都有,
求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是等比數(shù)列的前項和,且,
(1)求的通項公式
(2)設,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列的前項和
(1)證明數(shù)列是等比數(shù)列;
(2)若,且,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知等比數(shù)列中,分別是某等差數(shù)列的第5項、第3項、第2項,且公比
(1)求數(shù)列的通項公式;
(2)已知數(shù)列滿足:的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知是首項為19,公差d=-2的等差數(shù)列,的前n項和.(1)求通項公式
(2)設是首項為1,公比為3的等比數(shù)列,求數(shù)列的通項公式及其前n項和

查看答案和解析>>

同步練習冊答案