【題目】近幾年,我國在電動汽車領(lǐng)域有了長足的發(fā)展,電動汽車的核心技術(shù)是動力總成,而動力總成的核心技術(shù)是電機和控制器,我國永磁電機的技術(shù)已處于國際領(lǐng)先水平.某公司計劃今年年初用196萬元引進一條永磁電機生產(chǎn)線,第一年需要安裝、人工等費用24萬元,從第二年起,包括人工、維修等費用每年所需費用比上一年增加8萬元,該生產(chǎn)線每年年產(chǎn)值保持在100萬元.

1)引進該生產(chǎn)線幾年后總盈利最大,最大是多少萬元?

2)引進該生產(chǎn)線幾年后平均盈利最多,最多是多少萬元?

【答案】1)引進生產(chǎn)線10年后總盈利最大為204萬元(2)引進生產(chǎn)線7年后平均盈利最多為24萬元

【解析】

1)設(shè)引進設(shè)備n年后總盈利為萬元,設(shè)除去設(shè)備引進費用,第n年的成本為,構(gòu)成一等差數(shù)列,由等差數(shù)列前公式求得第年總成本,這樣可得總盈利,由二次函數(shù)性質(zhì)可得最大值;

(2)平均盈利為,可用基本不等式求得最大值.

解:(1)設(shè)引進設(shè)備n年后總盈利為萬元,設(shè)除去設(shè)備引進費用,第n年的成本為,構(gòu)成一等差數(shù)列,前n年成本之和為萬元;

,,

所以當(dāng)時,萬元;

答:引進生產(chǎn)線10年后總盈利最大為204萬元

2)設(shè)n年后平均盈利為萬元,則,

因為,

當(dāng),,當(dāng)且僅當(dāng)取得等號,

時,萬元:

答:引進生產(chǎn)線7年后平均盈利最多為24萬元

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy2=2pxp0)的焦點為F,直線y=kx+1)與C相切于點A,|AF|=2

)求拋物線C的方程;

)設(shè)直線lCM,N兩點,TMN的中點,若|MN|=8,求點Ty軸距離的最小值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修44:坐標(biāo)系與參數(shù)方程

在以直角坐標(biāo)原點為極點,的非負半軸為極軸的極坐標(biāo)系下,曲線的方程是,將向上平移1個單位得到曲線

)求曲線的極坐標(biāo)方程;

)若曲線的切線交曲線于不同兩點,切點為.求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項和是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、是橢圓和雙曲線的公共焦點,是他們的一個公共點,且,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】受電視機在保修期內(nèi)維修費等因素的影響,企業(yè)生產(chǎn)每臺電視機的利潤與該電視機首次出現(xiàn)故障的時間有關(guān).某電視機制造廠生產(chǎn)甲、乙兩種型號電視機,保修期均為2年,現(xiàn)從該廠已售出的兩種型號電視機中各隨機抽取50臺,統(tǒng)計數(shù)據(jù)如下:

品牌

首次出現(xiàn)故障時間x(年)

電視機數(shù)量(臺)

3

5

42

8

42

每臺利潤(千元)

1

2

3

1.8

2.8

將頻率視為概率,解答下列問題:

1)從該廠生產(chǎn)的甲種型號電視機中隨機抽取一臺,求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;

2)該廠預(yù)計今后這兩種型號電視機銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種型號電視機,若從經(jīng)濟效益的角度考慮,你認為應(yīng)該產(chǎn)生哪種型號電視機?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】4個不同的球,4個不同的盒子,把球全部放入盒內(nèi).

1恰有1個盒不放球,共有幾種放法?

2恰有1個盒內(nèi)有2個球,共有幾種放法?

3恰有2個盒不放球,共有幾種放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為極點,軸正半軸為極軸建立極坐標(biāo)系,設(shè)點在曲線上,點在曲線上,且為正三角形.

1)求點,的極坐標(biāo);

2)若點為曲線上的動點,為線段的中點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機抽取件產(chǎn)品,統(tǒng)計其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如圖1):規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時劣質(zhì)品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.

1)求每件產(chǎn)品的平均銷售利潤;

2)該企業(yè)主管部門為了解企業(yè)年營銷費用(單位:萬元)對年銷售量(單位:萬件)的影響,對該企業(yè)近年的年營銷費用和年銷售量,數(shù)據(jù)做了初步處理,得到的散點圖(如圖2)及一些統(tǒng)計量的值.

表中,,,

根據(jù)散點圖判斷,可以作為年銷售量(萬件)關(guān)于年營銷費用(萬元)的回歸方程.

①求關(guān)于的回歸方程;

②用所求的回歸方程估計該企業(yè)每年應(yīng)投入多少營銷費,才能使得該企業(yè)的年收益的預(yù)報值達到最大?(收益銷售利潤營銷費用,取

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

同步練習(xí)冊答案