已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為
2
,且過點(diǎn)P(4,-
10
)

(1)求雙曲線的方程;
(2)若點(diǎn)M(3,m)在雙曲線上,求△F1MF2的面積.
分析:(1)設(shè)出雙曲線的方程,代入點(diǎn)P的坐標(biāo),即可得到雙曲線的方程;
(2)利用點(diǎn)M(3,m)在雙曲線上,求出m值,進(jìn)而利用S=
1
2
|F1F2|•|m|,即可求△F1MF2的面積.
解答:解:(1)∵e=
2
,∴可設(shè)雙曲線的方程x2-y2
∵雙曲線過點(diǎn)P(4,-
10
),∴16-10=λ,即λ=6
∴雙曲線的方程x2-y2=6
(2)由(1)知,雙曲線中a=b=
6

c=2
3
,∴F1(-2
3
,0)
F2(2
3
,0)

∴|F1F2|=4
3

∵點(diǎn)M(3,m)在雙曲線上,∴9-m2=6,∴|m|=
3

∴△F1MF2的面積為S=
1
2
|F1F2|•|m|=6
即△F1MF2的面積為6.
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程,考查三角形面積的計(jì)算,確定雙曲線的方程是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為
2
,且過點(diǎn)(4,-
10
)
,則雙曲線的標(biāo)準(zhǔn)方程是
x2-y2=6
x2-y2=6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點(diǎn),焦點(diǎn)為F1(5,0),F(xiàn)2(-5,0),且過點(diǎn)(3,0),
(1)求雙曲線的標(biāo)準(zhǔn)方程.
(2)求雙曲線的離心率及準(zhǔn)線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,一條漸近線方程為y=x,且過點(diǎn)(4,-
10
)

(1)求雙曲線方程;
(2)設(shè)A點(diǎn)坐標(biāo)為(0,2),求雙曲線上距點(diǎn)A最近的點(diǎn)P的坐標(biāo)及相應(yīng)的距離|PA|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,一條漸近線方程為y=x,且過點(diǎn)(4,-
10
)
,A點(diǎn)坐標(biāo)為(0,2),則雙曲線上距點(diǎn)A距離最短的點(diǎn)的坐標(biāo)是
7
,1)
7
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺(tái)區(qū)一模)已知雙曲線的中心在原點(diǎn),焦點(diǎn)在x軸上,一條漸近線方程為y=
3
4
x
,則該雙曲線的離心率是
5
4
5
4

查看答案和解析>>

同步練習(xí)冊(cè)答案