在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=2sinθ,過(guò)極點(diǎn)的一條直線l與圓相交于O,A兩點(diǎn),且∠AOX=45°,則OA=   
【答案】分析:直接利用極角∠AOX=45°,及圓C的極坐標(biāo)方程為ρ=2sinθ,即可得到答案;
解答:解:∵∠AOX=45°,
即θ=45°
∴OA=2sin45°=2×=
故答案為:
點(diǎn)評(píng):本題考查簡(jiǎn)單曲線的極坐標(biāo)方程,解答的關(guān)鍵是利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=2sinθ,過(guò)極點(diǎn)的一條直線l與圓相交于O,A兩點(diǎn),且∠AOX=45°,則OA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點(diǎn)A,D為PA的中點(diǎn),
過(guò)點(diǎn)D引割線交⊙O于B,C兩點(diǎn),求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
D.選修4-5:不等式選講
求函數(shù)y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選做題)在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共20分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:幾何證明選講
如圖,PA切⊙O于點(diǎn)A,D為PA的中點(diǎn),過(guò)點(diǎn)D引割線交⊙O于B、C兩點(diǎn).求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
設(shè)M=
.
10
02
.
,N=
.
1
2
0
01
.
,試求曲線y=sinx在矩陣MN變換下的曲線方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被圓C所截得的弦長(zhǎng).
D.選修4-5:不等式選講
解不等式:|2x+1|-|x-4|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•深圳二模)在極坐標(biāo)系中,圓C的極坐標(biāo)方程是ρ=4cos(θ+
π
6
)
.現(xiàn)以極點(diǎn)為原點(diǎn),以極軸為x軸的正半軸建立直角坐標(biāo)系,則圓C的半徑是
2
2
,圓心的直角坐標(biāo)是
3
,-1)
3
,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案