已知直線l的方向向量為
a
=(1,1),且過(guò)直線l1:2x+y+1=0和直線l2:x-2y+3=0的交點(diǎn).
(1)求直線l的方程;
(2)若點(diǎn)P(x0,y0)是曲線y=x2-lnx上任意一點(diǎn),求點(diǎn)P到直線l的距離的最小值.
分析:(1)先求出兩直線的交點(diǎn),然后根據(jù) 直線的方向向量可求直線的斜率,即可求解直線方程
(2)當(dāng)曲線上過(guò)點(diǎn)P的切線和直線y=x+2平行時(shí),點(diǎn)P到直線y=x-2的距離最小.求出曲線對(duì)應(yīng)的函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)值等于1,可得且點(diǎn)的坐標(biāo),此切點(diǎn)到直線y=x-2的距離即為所求.
解答:解:(1)由
2x+y+1=0
x-2y+3=0
可得
x=-1
y=1

由題意可得,直線l的斜率k=1,且過(guò)(-1,1)
∴直線l的方程為y-1=x+1即x-y+2=0
(2)當(dāng)過(guò)點(diǎn)P的切線和直線y=x+2平行時(shí),點(diǎn)P到直線y=x+2的距離最。
由題意可得,y′=2x-
1
x
=1,
∴x=1,或 x=-
1
2
(舍去)
故曲線y=x2-lnx上和直線y=x+2平行的切線經(jīng)過(guò)的切點(diǎn)坐標(biāo)(1,1),
點(diǎn)(1,1)到直線y=x+2的距離d=
|1-1+2|
2
=
2

故點(diǎn)P到直線y=x-2的最小距離為
2
點(diǎn)評(píng):本題考查點(diǎn)到直線的距離公式的應(yīng)用,函數(shù)的導(dǎo)數(shù)的求法及導(dǎo)數(shù)的意義,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓M的對(duì)稱(chēng)軸為坐標(biāo)軸,且拋物線x2=-4
2
y
的焦點(diǎn)是橢圓M的一個(gè)焦點(diǎn),又點(diǎn)A(1,
2
)
在橢圓M上.
(Ⅰ)求橢圓M的方程;
(Ⅱ)已知直線l的方向向量為(1,
2
)
,若直線l與橢圓M交于B、C兩點(diǎn),求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l的方向向量與向量
a
=(1,2)垂直,且直線l過(guò)點(diǎn)A(1,1),則直線l的方程為( 。
A、x-2y-1=0
B、2x+y-3=0
C、x+2y+1=0
D、x+2y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知直線l的方向向量為(-1,0,1),平面α的法向量為(2,-2,1),那么直線l與平面α所成角的大小為
arcsin
2
6
arcsin
2
6
.(用反三角表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的上下焦點(diǎn)分別為F1,F(xiàn)2,短軸兩個(gè)端點(diǎn)為A,B,且四邊形F1AF2B是邊長(zhǎng)為2的正方形.
(1)求橢圓方程;
(2)已知直線l的方向向量為(1,
2
),若直線l與橢圓交于P、Q兩點(diǎn),O為坐標(biāo)原點(diǎn),求△OPQ面積的最大值.
(3)過(guò)點(diǎn)T(1,0)作直線l與橢圓交于M、N兩點(diǎn),與y軸交于點(diǎn)R,若
RM
MT
RN
NT
.證明:λ+μ為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案