【題目】某保險公司利用簡單隨機(jī)抽樣方法,對投保車輛進(jìn)行抽樣,樣本車輛中每輛車的賠付結(jié)果統(tǒng)計如下:
賠付金額(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
車輛數(shù)(輛) | 500 | 130 | 100 | 150 | 120 |
(1)若每輛車的投保金額均為2800元,估計賠付金額大于投保金額的概率.
(2)在樣本車輛中,車主是新司機(jī)的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機(jī)的占20%,估計在已投保車輛中,新司機(jī)獲賠金額為4000元的概率.
【答案】(1)0.27; (2)0.24
【解析】試題分析:(1)設(shè)表示事件“賠付金額為3000元”,表示事件“賠付金額為4000元”,以頻率估計概率求得,,在根據(jù)投保金額為2800,賠付金額大于投保金額對應(yīng)的情形時3000元和4000元,問題就得以解決;
(2)設(shè)表示事件“投保車輛中新司機(jī)獲賠4000元”,分別求出樣本車輛中車主為新司機(jī)人數(shù)和賠付金額為4000元的車輛中車主為新司機(jī)人數(shù),在求出其頻率,最后利用頻率表示概率.
試題解析:
(1)設(shè)表示事件“賠付金額為3000元”,表示事件“賠付金額為4000元”,以頻率估計概率得:
,,
由于投保金額為2800,賠付金額大于投保金額對應(yīng)的情形時3000元和4000元,所以其概率為:
設(shè)表示事件“投保車輛中新司機(jī)獲賠4000元”,由已知,樣本車輛中車主為新司機(jī)的有 ,而賠付金額為4000元的車輛中車主為新司機(jī)的有
所以樣本中車輛中新司機(jī)車主獲賠金額為4000元的頻率為
由頻率估計概率得
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,現(xiàn)學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002, ,800進(jìn)行編號;
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;
(下面摘取了第7行到第9行)
(2)抽取的100的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?/span>
成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42,若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求a,b的值:
人數(shù) | 數(shù)學(xué) | |||
優(yōu)秀 | 良好 | 及格 | ||
地理 | 優(yōu)秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | a | 4 | b |
(3)在地理成績及格的學(xué)生中,已知求數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在上是增函數(shù),且.
(1)求a的取值范圍;
(2)求函數(shù)在上的最大值.
(3)已知,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展了一系列的讀書教育活動,為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對其課外閱讀時間進(jìn)行調(diào)查,下圖是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時間不低于60分鐘的學(xué)生稱為“讀書迷”,低于60分鐘的學(xué)生稱為“非讀書迷”.
(Ⅰ) 求的值并估計全校3000名學(xué)生中“讀書迷”大概有多少?(將頻率視為概率)
(Ⅱ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書迷”與性別有關(guān)?
非讀書迷 | 讀書迷 | 合計 | |
男 | 15 | ||
女 | 45 | ||
合計 |
附: , .
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為, 是橢圓上任意一點(diǎn),且點(diǎn)到橢圓的一個焦點(diǎn)的最大距離等于.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)的直線與橢圓相交于不同兩點(diǎn),設(shè)為橢圓上一點(diǎn),是否存在整數(shù),使得(其中為坐標(biāo)原點(diǎn))?若存在,試求整數(shù)的所有取值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(為常數(shù)).
(1)求的極值;
(2)設(shè),記,已知為函數(shù)是兩個零點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1) 若是函數(shù)的一個極值點(diǎn),求值和函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,求在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若是 的一個極值點(diǎn),求 值及的單調(diào)區(qū)間;
(2)當(dāng) 時,求在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)若, ,求函數(shù)的單調(diào)區(qū)間;
(2)若,且方程在內(nèi)有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com