“n=10”是“(
x
+
1
3x
)n
”的展開(kāi)式中有常數(shù)項(xiàng)的(  )
分析:利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出第r+1項(xiàng),令x的指數(shù)為0求出常數(shù)項(xiàng)列出方程求出n,r的關(guān)系,進(jìn)而根據(jù)必要條件、充分條件與充要條件的判斷可得答案.
解答:解:Tr+1=Cnr
x
n-r
1
3x
r=Cnrx 
3n-5r
6

3n-5r
6
=0,
∴3n=5r.
∴n必為5的倍數(shù),
∴“n=10”是“(
x
+
1
3x
)n
”的展開(kāi)式中有常數(shù)項(xiàng);反之不成立.
故“n=10”是“(
x
+
1
3x
)n
”的展開(kāi)式中有常數(shù)項(xiàng)的充分不必要條件.
故選A.
點(diǎn)評(píng):本題考查必要條件、充分條件與充要條件的判斷,考查二項(xiàng)展開(kāi)式的通項(xiàng)公式是解決二項(xiàng)展開(kāi)式的特點(diǎn)項(xiàng)問(wèn)題的工具.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)某校高一年級(jí)共有學(xué)生320人.為調(diào)查高一年級(jí)學(xué)生每天晚自習(xí)自主支配學(xué)習(xí)時(shí)間(指除了完成教師布置的作業(yè)后學(xué)生根據(jù)自己的需要進(jìn)行學(xué)習(xí)的時(shí)間)情況,學(xué)校采用隨機(jī)抽樣的方法從高一學(xué)生中抽取了n名學(xué)生進(jìn)行問(wèn)卷調(diào)查.根據(jù)問(wèn)卷得到了這n名學(xué)生每天晚自習(xí)自主支配學(xué)習(xí)時(shí)間的數(shù)據(jù)(單位:分鐘),按照以下區(qū)間分為七組:①[0,10),②[10,20),③[20,30),④[30,40),⑤[40,50),⑥[50,60),⑦[60,70),得到頻率分布直方圖如圖.已知抽取的學(xué)生中每天晚自習(xí)自主支配學(xué)習(xí)時(shí)間低于20分鐘的人數(shù)是4人.
(Ⅰ)求n的值;
(Ⅱ)若高一全體學(xué)生平均每天晚自習(xí)自主支配學(xué)習(xí)時(shí)間少于45分鐘,則學(xué)校需要減少作業(yè)量.根據(jù)以上抽樣調(diào)查數(shù)據(jù),學(xué)校是否需要減少作業(yè)量?(注:統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表)
(Ⅲ)問(wèn)卷調(diào)查完成后,學(xué)校從第3組和第4組學(xué)生中利用分層抽樣的方法抽取7名學(xué)生進(jìn)行座談,了解各學(xué)科的作業(yè)布置情況,并從這7人中隨機(jī)抽取兩名學(xué)生聘為學(xué)情調(diào)查聯(lián)系人,設(shè)第3組中學(xué)生被聘的人數(shù)是X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從{1,2,3,…n}(n∈N*)中隨機(jī)取出一個(gè)數(shù)x,按程序框圖所給算法輸出y.
(1)設(shè)n=10,求y<0的概率;
(2)若y>0的概率是
16
,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•天津模擬)某班t名學(xué)生在2011年某次數(shù)學(xué)測(cè)試中,成績(jī)?nèi)拷橛?0分與130分之間,將測(cè)試結(jié)果按如下方式分成五組,第一組[80,90);第二組[90,100)…第五組[120,130],下表是按上述分組方法得到的頻率分布表:
分 組 頻 數(shù) 頻 率
[80,90) x 0.04
[90,100) 9 y
[100,110) z 0.38
[110,120) 17 0.34
[120,130] 3 0.06
(Ⅰ) 求t及分布表中x,y,z的值;
(2)校長(zhǎng)決定從第一組和第五組的學(xué)生中隨機(jī)抽取2名進(jìn)行交流,求第一組至少有一名學(xué)生被抽到的概率;
(3)設(shè)從第一組或第五組中任意抽取的兩名學(xué)生的數(shù)學(xué)測(cè)試成績(jī)分別記為m,n,求事件“|m-n|≤10”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={1,2,3,…,2n}(n∈N*).對(duì)于A(yíng)的一個(gè)子集S,若S滿(mǎn)足性質(zhì)P:“存在不大于n的正整數(shù)m,使得對(duì)于S中的任意一對(duì)元素s1,s2,都有|s1-s2|≠m”,則稱(chēng)S為理想集.對(duì)于下列命題:
①當(dāng)n=10時(shí),集合B={x∈A|x>9}是理想集;
②當(dāng)n=10時(shí),集合C={x∈A|x=3k-1,k∈N*}是理想集;
③當(dāng)n=1 000時(shí),集合S是理想集,那么集合T={2 001-x|x∈S}也是理想集.
其中的真命題是
②③
②③
(寫(xiě)出所有真命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案