設f(x)=-x,g(x)=
-2X(x≤0)
-x2(x>0)
,則方程f[g (x)]-2=0的解是
 
分析:由已知,f[g (x)]=2,∴g (x)=-2,轉化成知道分段函數(shù)g (x)的函數(shù)值,求x的問題.逐段尋求,最后取并.
解答:解:將g(x)看作整體,由已知g (x)=-2,
當x≤0時,由-2x=-2,得x=1,與x≤0矛盾.舍去.
當x>0時由-x2=2得x=
2
(舍去x=-
2

故答案為:
2
點評:本題考查復合函數(shù)概念,分段函數(shù)求值,分類討論思想.在解決分段函數(shù)問題時,一定要注意自變量的值所在范圍即其相應的解析式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)=
x
,g(x)=-x+a(a>0)
(1)若F(x)=f(x)+g(x),試求F(x)的單調遞減區(qū)間;
(2)設G(x)=
f(x),f(x)≥g(x)
{g(x),f(x)<g(x)
,試求a的值,使G(x)到直線x+y-1=0距離的最小值為
2
;
(3)若不等式|
f(x)+a[g(x)-2a]
f(x)
|≤1
對x∈[1,4]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=ax,g(x)=x 
1
3
,h(x)=logax,且a滿足loga(1-a2)>0,那么當x>1時必有(  )

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省臺州市臨海市杜橋中學高三(下)3月月考數(shù)學試卷(文科)(解析版) 題型:選擇題

設f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省重點中學協(xié)作體高三第一次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:選擇題

設f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省高考數(shù)學試卷(文科)(解析版) 題型:選擇題

設f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步練習冊答案