A. | -$\frac{1}{3}$ | B. | -$\frac{1}{4}$ | C. | -$\frac{4}{9}$ | D. | -1 |
分析 設(shè)|$\overrightarrow{CB}$|=m,由,∠ACB=$\frac{π}{2}$,得到$\overrightarrow{CA}$•$\overrightarrow{CB}$=0,根據(jù)模的計(jì)算得到f(x)=$\sqrt{{x}^{2}+4{m}^{2}}$-$\sqrt{{m}^{2}+1}$,再根據(jù)f(x)有唯一的零點(diǎn),求出m的值,最后根據(jù)M為AB的中點(diǎn)和向量的數(shù)量積德運(yùn)算即可求出答案.
解答 解:設(shè)|$\overrightarrow{CB}$|=m,m>0,
∵∠ACB=$\frac{π}{2}$,
∴$\overrightarrow{CA}$⊥$\overrightarrow{CB}$,
∴$\overrightarrow{CA}$•$\overrightarrow{CB}$=0
∴|x$\overrightarrow{CA}$+2$\overrightarrow{CB}$|2=x2+4m2,|$\overrightarrow{CB}$$+\overrightarrow{CA}$|=m2+1,
∴f(x)=|x$\overrightarrow{CA}$+2$\overrightarrow{CB}$|-|$\overrightarrow{CB}$$+\overrightarrow{CA}$|=$\sqrt{{x}^{2}+4{m}^{2}}$-$\sqrt{{m}^{2}+1}$,
∵f(x)有唯一的零點(diǎn),
∴f(x)=0有唯一的解,
∴$\sqrt{{x}^{2}+4{m}^{2}}$-$\sqrt{{m}^{2}+1}$=0,
即x2+4m2=m2+1有唯一的解,
即x2=1-3m2有唯一的解,
∴1-3m2=0,
解得m=$\frac{\sqrt{3}}{3}$,
∴|AB|2=m2+1=$\frac{4}{3}$
∴|AB|=$\frac{2\sqrt{3}}{3}$
∵M(jìn)為AB的中點(diǎn),
∴|$\overrightarrow{MA}$|=|$\overrightarrow{MB}$|=$\frac{\sqrt{3}}{3}$,
∴$\overrightarrow{MA}$$•\overrightarrow{MB}$=|$\overrightarrow{MA}$|•|$\overrightarrow{MB}$|cosπ=-$\frac{1}{3}$,
故選:A.
點(diǎn)評 本題考查了向量的模的計(jì)算,數(shù)量的運(yùn)算,以及函數(shù)的零點(diǎn)問題,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a,b | B. | a,c | C. | d,b | D. | d,c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充分必要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2\root{5}{{2}^{3}}}$ | B. | $\frac{1}{10\root{5}{{2}^{3}}}$ | C. | $\frac{1}{\frac{2}{5}\root{5}{{2}^{3}}}$ | D. | $\frac{1}{\frac{1}{10}\root{5}{{2}^{3}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com