橢圓的左、右焦點為F1,F(xiàn)2,一直線過F1交橢圓于A,B兩點,則△ABF2的周長為

[     ]

A.32
B.16
C.8
D.4
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

分別是橢圓的左、右焦點.

(1)若是該橢圓上的一個動點,求的取值范圍;

(2)設過定點的直線與橢圓交于不同的兩點M、N,且∠為銳角(其中為坐標原點),求直線的斜率的取值范圍.

(3)設是它的兩個頂點,直線AB相交于點D,與橢圓相交于E、F兩點.求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

、分別是橢圓的左、右焦點.

(1)若是該橢圓上的一個動點,求的取值范圍;

(2)設過定點的直線與橢圓交于不同的兩點M、N,且∠為銳角(其中為坐標原點),求直線的斜率的取值范圍.

(3)設是它的兩個頂點,直線AB相交于點D,與橢圓相交于EF兩點.求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分16分)

在平面直角坐標系中,如圖,已知橢圓的左、右頂點為A、B,右焦點為F。設過點T()的直線TA、TB與橢圓分別交于點M,其中m>0,。

(1)設動點P滿足,求點P的軌跡;

(2)設,求點T的坐標;

(3)設,求證:直線MN必過x軸上的一定點(其坐標與m無關)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010江蘇卷)18、(本小題滿分16分)

在平面直角坐標系中,如圖,已知橢圓的左、右頂點為A、B,右焦點為F。設過點T()的直線TA、TB與橢圓分別交于點M、,其中m>0,。

(1)設動點P滿足,求點P的軌跡;

(2)設,求點T的坐標;

(3)設,求證:直線MN必過x軸上的一定點(其坐標與m無關)。

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年湖北武漢市高三2月調研測試理科數(shù)學試卷(解析版) 題型:解答題

如圖,矩形ABCD中,|AB|2,|BC|2E,F,G,H分別矩形四條邊的中點,分別以HF,EG所在直線為x軸,y軸建立平面直角坐標系,已知λλ,其中0λ1

1)求證:直線ERGR′的交點M在橢圓Γy21上;

2N直線lyx2上且不在坐標軸上的任意一點,F1、F2分別為橢圓Γ的左、右焦點,直線NF1NF2與橢圓Γ的交點分別為P、QS、T是否存在點N,使直線OP、OQ、OS、OT的斜率kOPkOQkOS、kOT滿足kOPkOQkOSkOT0?若存在,求出點N的坐標;若不存在,說明理由

 

查看答案和解析>>

同步練習冊答案