過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與拋物線y2=2px(p>0)交于不同的兩點(diǎn)A、B,試確定實(shí)數(shù)a的取值范圍,使|AB|≤2p.
分析:設(shè)直線l與拋物線的兩個(gè)交點(diǎn)的坐標(biāo)為A(x1,y1)、B(x2,y2).由題意,直線l的方程為y=x-a,與拋物線方程聯(lián)立可得△>0、根與系數(shù)的關(guān)系,利用弦長(zhǎng)公式可得|AB|,由于0<|AB|≤2p,解出即可.
解答:解:由題意,直線l的方程為y=x-a,將y=x-a代入y2=2px,得x2-2(a+p)x+a2=0.
設(shè)直線l與拋物線的兩個(gè)交點(diǎn)的坐標(biāo)為A(x1,y1)、B(x2,y2),
則  
4(a+p)2-4a2>0
x1+x2=2(a+p)
x1x2=a2.

又y1=x1-a,y2=x2-a,
|AB|=
(x1-x2)2+(y1-y2)2
=
2[(x1+x2)2-4x1x2]
=
8p(p+2a)

∵0<|AB|≤2p,8p(p+2a)>0,∴0<
8p(p+2a)
≤2p

解得-
p
2
<a≤-
p
4
. 
a∈(-
p
2
,-
p
4
]
時(shí),有|AB|≤2p.
點(diǎn)評(píng):本題考查了直線與拋物線相交問(wèn)題轉(zhuǎn)化為方程聯(lián)立可得△>0、根與系數(shù)的關(guān)系、弦長(zhǎng)公式、不等式的解法等基礎(chǔ)知識(shí)與基本技能方法,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省唐山一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知拋物線y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年云南省高三數(shù)學(xué)一輪復(fù)習(xí)章節(jié)練習(xí):拋物線(解析版) 題型:解答題

已知拋物線y2=2px(p>0).過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案