菱形的一個(gè)內(nèi)角為60°,邊長為4,一橢圓經(jīng)過它的兩個(gè)頂點(diǎn),并以它的另外兩個(gè)頂點(diǎn)為焦點(diǎn),則橢圓的標(biāo)準(zhǔn)方程是
 
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由橢圓的焦點(diǎn)是菱形60°角的兩個(gè)頂點(diǎn),根據(jù)橢圓的定義可知2a=8,由圖及已知條件可得b=BO=BC•sin30°=2,a=OC=2
3
,即可求出橢圓方程.
解答: 解:不妨設(shè)以菱形內(nèi)角為600的一對(duì)頂點(diǎn)為端點(diǎn)的對(duì)角線所在的直線為x軸,
建立直角坐標(biāo)系.
設(shè)橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0),C',C為焦點(diǎn),
由圖及已知條件可得,
b=BO=BC•sin30°=2,c=CO=
16-4
=2
3
,a=
b2+c2
=4,
故所求之橢圓方程為
x2
16
+
y2
4
=1或
y2
16
+
x2
4
=1.
若以B',B為焦點(diǎn),則同樣方法求得橢圓方程為
x2
16
+
y2
12
=1或
y2
16
+
x2
12
=1.
故答案為:
x2
16
+
y2
4
=1或
y2
16
+
x2
4
=1或
x2
16
+
y2
12
=1或
y2
16
+
x2
12
=1.
點(diǎn)評(píng):此題是個(gè)基礎(chǔ)題.考查橢圓的定義和標(biāo)準(zhǔn)方程即簡單的幾何性質(zhì),應(yīng)用了待定系數(shù)法求橢圓方程,體現(xiàn)了數(shù)形結(jié)合的思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

空間四邊形OABC中,邊長AC=BC,OA=3,OB=1,則向量
AB
OC
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)F任作一條與兩坐標(biāo)軸都不垂直的弦AB,若點(diǎn)M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點(diǎn)M為該橢圓的“左特征點(diǎn)”,那么“左特征點(diǎn)”M一定是(  )
A、橢圓左準(zhǔn)線與x軸的交點(diǎn)
B、坐標(biāo)原點(diǎn)
C、橢圓右準(zhǔn)線與x軸的交點(diǎn)
D、右焦點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2
3
cos2x+2sinxcosx-
3
,求:
(1)函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f(
α
2
-
π
6
)-f(
α
2
+
π
12
)=2
2
,且α∈(
π
2
,π)
,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx在x0處取得極小值-2,使其導(dǎo)函數(shù)f′(x)<0的范圍為(-1,1)
(Ⅰ)求x0的值及f(x)的解析式
(Ⅱ) 設(shè)點(diǎn)A為函數(shù)f(x)圖象上極大值對(duì)應(yīng)的點(diǎn),曲線f(x)在點(diǎn)A處的切線l1交f(x)的圖象于另一點(diǎn)B,且曲線f(x)在點(diǎn)B處的切線l2,在原點(diǎn)O處的切線為l,直線l1,l2分別與直線l交于M,N,求證:
NO
=2
OM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,則出現(xiàn)“2次正面朝上,2次反面向朝上”的概率為
 
,出現(xiàn)“1次正面朝上,3次反面朝上”的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P點(diǎn)在△ABC確定的平面上,O為平面外一點(diǎn),下列說法中不正確的是(  )
A、
OA
、
OB
、
OC
是共面向量
B、若
OP
=x
OA
+y
OB
,則P點(diǎn)在面OAB上
C、
AP
、
AB
、
AC
是共面向量
D、若P點(diǎn)是△ABC的重心,則
OP
=
1
3
OA
+
1
3
OB
+
1
3
OC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在黃興路步行街同側(cè)有8塊廣告牌,牌的底色可選用紅、藍(lán)兩種顏色,若只要求相鄰兩塊牌的底色不都為紅色,則不同的配色方案共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a,b是從區(qū)間[0,3]任取的兩個(gè)整數(shù),求上述方程有實(shí)根的概率;
(2)若a,b是從區(qū)間[0,3]上任取的兩個(gè)實(shí)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

同步練習(xí)冊答案