(本題滿分12分)已知二次函數(shù)滿足條件
(1)求;(2)求在區(qū)間上的最大值和最小值。

(1)
(2)當時,的最小值為,當時,的最大值為。

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù),判斷上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)= (a>0,x>0).
(1)用函數(shù)的單調(diào)性定義證明:f(x)在(0,+∞)上是增函數(shù);
(2)若f(x)在[,2]上的值域是[,2],求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
某商品在近30天內(nèi)每件的銷售價格(元)與時間(天)的函數(shù)關(guān)系是:
,該商品的日銷量(件)與時間(天)的函數(shù)關(guān)系是 ,求該商品的日銷量金額的最大值,并指出日銷售金額最多的一天是30天中的第幾天。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知函數(shù),設(shè)函數(shù),
(1)若,且函數(shù)的值域為,求的表達式.
(2)若上是單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)已知二次函數(shù)的圖象過點(1,13),
且函數(shù)是偶函數(shù).
(1)求的解析式;
(2)已知,,求函數(shù)在[,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩種產(chǎn)品的收益與投資的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
設(shè)當時,函數(shù)的值域為,且當時,恒有,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖等腰梯形ABCD的兩底分別為AB=10,CD=4,兩腰AD=CB=5,動點P由B點沿折線BCDA向A運動,設(shè)P點所經(jīng)過的路程為x,三角形ABP的面積為S.

(1)求函數(shù)S=f(x)的解析式;
(2)試確定點P的位置,使△ABP的面積S最大.

查看答案和解析>>

同步練習冊答案