已知數(shù)列{an}滿足:a1=1,an+1=2an+n+1,n∈N*.
(Ⅰ)若數(shù)列{an+pn+q}是等比數(shù)列,求實(shí)數(shù)p、q的值;
(Ⅱ)若數(shù)列{an}的前n項和為Sn,求an和Sn;
(Ⅲ)試比較an與(n+2)2的大小.
分析:(1)利用等比數(shù)列的定義,設(shè)
=m對任意n∈N
*都成立,待定系數(shù)法求出常數(shù)p和q的值.
(2)求出數(shù)列通項公式,拆項后分別使用等比數(shù)列、等差數(shù)列求和公式進(jìn)行求和.
(3)對項數(shù)n進(jìn)行檢驗、歸納猜想,將猜想的結(jié)論進(jìn)行等價轉(zhuǎn)化,明確目標(biāo),將不等式進(jìn)行適當(dāng)?shù)姆趴s.
解答:解:(Ⅰ)設(shè)
=m對任意n∈N
*都成立.
得a
n+1+p(n+1)+q=ma
n+mpn+mq.(2分)
又a
n+1=2a
n+n+1,
則2a
n+n+1+pn+p+q=ma
n+mpn+mq,
即(2-m)a
n+(p+1-mp)n+p+1+q-mq=0.
由已知可得a
n>0,
所以
.解得
.(5分)
則存在常數(shù)p=1,q=2使數(shù)列{a
n+pn+q}為等比數(shù)列.(6分)
(Ⅱ)由(Ⅰ)得a
n+n+2=4•2
n-1.
則a
n=2
n+1-n-2.(8分)
所以S
n=a
1+a
2++a
n=2
2+2
3++2
n+1-(3+4++n+2)=
-=
2n+2-4-.(10分)
(Ⅲ)當(dāng)n=1時,a
1=1,(1+2)
2=9,則a
1<9;
當(dāng)n=2時,a
2=4,(2+2)
2=16,則a
2<16;
當(dāng)n=3時,a
3=11,(3+2)
2=25,則a
3<25;
當(dāng)n=4時,a
4=26,(4+2)
2=36,則a
4<36;
當(dāng)n=5時,a
5=57,(5+2)
2=49,則a
5>49;(11分)
當(dāng)n≥5時,要證a
n>(n+2)
2?2
n+1-n-2>(n+2)
2?2
n+1>n
2+5n+6.
而2
n+1=C
n+10+C
n+11+C
n+12++C
n+1n+1≥2(C
n+10+C
n+11+C
n+12)+C
n+13
=
2+2(n+1)+n(n+1)+≥2+2(n+1)+n(n+1)+(n-1)•n(∵n+1≥6)
=(n
2+5n+6)+[n(n-3)-2]>n
2+5n+6.
所以當(dāng)n≥5時,a
n>(n+2)
2.(13分)
因此當(dāng)1≤n≤4(n∈N
*)時,a
n<(n+2)
2;當(dāng)n≥5(n∈N
*)時,a
n>(n+2)
2.(14分)
點(diǎn)評:本題綜合考查數(shù)列的等比關(guān)系的確定,數(shù)列求和及將不等式適當(dāng)放所的方法.