1、若命題“p∨q”為真,“?p”為真,則( 。
分析:本題考查的是復(fù)合命題的真假問題.在解答時,可先結(jié)合條件“p或q”為真命題判斷p、q的情況,根據(jù)?p為真,由此即可獲得p、q 的真假情況,得到答案
解答:解:由題意可知:“p∨q”為真命題,
∴p、q中至少有一個為真,
∵?p為真,
∴p、q全為真時,p且q為真,即“p且q為真”此時成立;
當(dāng)p假、q真,
故選D.
點評:本題考查的是復(fù)合命題的真假問題.在解答的過程當(dāng)中充分體現(xiàn)了命題中的或非關(guān)系.值得同學(xué)們體會反思.屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x+2≤0},集合B為函數(shù)y=x2-2x+a的值域,集合C={x|x2-ax-4≤0},命題p:A∩B≠∅;命題q:A⊆C.
(1)若命題p為假命題,求實數(shù)a的取值范圍;
(2)若命題p∧q為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:方程x2-x+a2-6a=0有一正根和一負根.命題q:函數(shù)y=x2+(a-3)x+1的圖象與x軸無公共點.若命題“pⅤq”為真命題,而命題“p∧q”為假命題,則實數(shù)a的取值范圍是
(0,1]∪[5,6)
(0,1]∪[5,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定下列四個命題:
①sinx
1
2
是x
π
6
的充分不必要條件
②若命題“p∨q”為真,則命題“p∧q”為真
③若函數(shù)y=ax3+2x2+x-3(a∈R)在R上是增函數(shù),則 a≥
4
3

④若a<b,則am2<bm2 其中真命題是
 
(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:不等式|x|≥m的解集是R,命題q:f(x)=
2-mx
在區(qū)間(0,+∞) 上是減函數(shù),若命題“p∨q”為真,則實數(shù)m的范圍是
 

查看答案和解析>>

同步練習(xí)冊答案