7.已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x,則不等式f(x+1)<3的解集是(-4,2).

分析 根據(jù)條件,f(x+1)=f(|x+1|)<3,可得f(|x+1|)=(x+1)2-2|x+1|<3,求解不等式即可.

解答 解:∵函數(shù)f(x)為偶函數(shù),
∴f(|x|)=f(x),
∴f(x+1)=f(|x+1|)<3,
∴f(|x+1|)=(x+1)2-2|x+1|<3,
∴-1<|x+1|<3,
解得-4<x<2,
故答案為(-4,2).

點(diǎn)評 本題重點(diǎn)考查函數(shù)的奇偶性、分段函數(shù)、不等式的解法等知識,考查比較綜合,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)是定義在R上的偶函數(shù),當(dāng)x<0時(shí),f(x)=${(\frac{1}{3})^x}$,那么f($\frac{1}{2}$)的值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.$\frac{sin38°sin38°+cos38°sin52°-ta{n}^{2}15°}{3tan15°}$等于( 。
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{x-1,x≥0}\end{array}\right.$,若關(guān)于x的方程f(x)-a2+2a=0有三個不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是0<a<1或1<a<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{4}(x+1)|,-1<x<1}\\{cos\frac{π}{3}x,1≤x≤6}\end{array}\right.$,若存在實(shí)數(shù)x1,x2,x3,x4,滿足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則$\frac{({x}_{3}-1)({x}_{4}-1)}{({x}_{1}+1)({x}_{2}+1)}$的取值范圍是( 。
A.(0,4)B.(0,$\frac{7}{4}$)C.($\frac{1}{2}$,$\frac{9}{4}$)D.($\frac{1}{4}$,$\frac{7}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=log2(16x+k)-2x (k∈R)是偶函數(shù).
(1)求k;
(2)若不等式m-1≤f(x)≤2m+log217在x∈[-1,$\frac{1}{2}$]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)y=f(x)的定義域?yàn)镈,值域?yàn)锳,如果存在函數(shù)x=g(t),使得函數(shù)y=f[g(t)]的值域仍是A,那么稱x=g(t)是函數(shù)y=f(x)的一個等值域變換.
(1)判斷下列函數(shù)x=g(t)是不是函數(shù)y=f(x)的一個等值域變換?說明你的理由;
①$f(x)={log_2}x,x>0,x=g(t)=t+\frac{1}{t},t>0$;
②f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R.
(2)設(shè)f(x)=log2x的定義域?yàn)閤∈[2,8],已知$x=g(t)=\frac{{m{t^2}-3t+n}}{{{t^2}+1}}$是y=f(x)的一個等值域變換,且函數(shù)y=f[g(t)]的定義域?yàn)镽,求實(shí)數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,直三棱柱ABC-A1B1C1中,D是AB的中點(diǎn).
(1)證明:BC1∥平面A1CD;
(2)設(shè)AA1=AC=CB=2,$AB=2\sqrt{2}$,求異面直線AB1與CD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在空間內(nèi),不一定能確定一個平面的是( 。
A.兩條相交直線B.不共線的四點(diǎn)
C.兩條平行直線D.直線和直線外一點(diǎn)

查看答案和解析>>

同步練習(xí)冊答案