P是雙曲線的右支上一點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,焦距為2c,則△PF1F2的內(nèi)切圓的圓心橫坐標為( )
A.-a
B.a(chǎn)
C.-c
D.c
【答案】分析:點P是雙曲線右支上一點,按雙曲線的定義,|PF1|-|PF2|=2a,設(shè)三角形PF1F2的內(nèi)切圓心在橫軸上的投影為A(x,0),B、C分別為內(nèi)切圓與PF1、PF2的切點.由同一點向圓引得兩條切線相等知|PF1|-|PF2|=(PB+BF1)-(PC+CF2),由此得到△PF1F2的內(nèi)切圓的圓心橫坐標.
解答:解:∵點P是雙曲線右支上一點,
∴按雙曲線的定義,|PF1|-|PF2|=2a,
若設(shè)三角形PF1F2的內(nèi)切圓心在橫軸上的投影為A(x,0),該點也是內(nèi)切圓與橫軸的切點.
設(shè)B、C分別為內(nèi)切圓與PF1、PF2的切點.考慮到同一點向圓引得兩條切線相等:
則有:PF1-PF2=(PB+BF1)-(PC+CF2
=BF1-CF2=AF1-F2A
=(c+x)-(c-x)
=2x=2a
x=a
所以內(nèi)切圓的圓心橫坐標為a.
故選B.
點評:本題考查圓錐曲線的性質(zhì)和應(yīng)用,解題時要認真審題,仔細解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省成都市高三三診模擬考試文科數(shù)學(xué) 題型:填空題

.已知P是雙曲線的右支上一點,A1, A2分別為雙曲線的左、右頂點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,雙曲線的離心率為,有下列命題:

    ①雙曲線的一條準線被它的兩條漸近線所截得的線段長度為

    ②若;

    ③的內(nèi)切圓的圓心橫坐標為;

    ④若直線PF1的斜率為

    其中正確的命題的序號是           。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年四川省高三第三次模擬考試(理) 題型:填空題

已知P是雙曲線的右支上一點,A1,A2分別為雙曲線的左、右頂點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,雙曲線的離心率為e,有下列命題:

    ①雙曲線的一條準線被它的兩條漸近線所截得的線段長度為

②若,則e的最大值為

的內(nèi)切圓的圓心橫坐標為a;

④若直線PF1的斜率為k,則

其中正確的命題的序號是                  .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省成都市石室中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:填空題

已知P是雙曲線的右支上一點,A1,A2分別為雙曲線的左、右頂點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,雙曲線的離心率為e,有下列命題:①雙曲線的一條準線被它的兩條漸近線所截得的線段長度為
②若|PF1|=e|PF2|,則e的最大值為;③△PF1F2的內(nèi)切圓的圓心橫坐標為a;④若直線PF1的斜率為k,則e2-k2>1,其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年北京市石景山區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知P是雙曲線的右支上一點,A1,A2分別為雙曲線的左、右頂點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,雙曲線的離心率為e,有下列命題:
①雙曲線的一條準線被它的兩條漸近線所截得的線段長度為;
②若|PF1|=e|PF2|,則e的最大值為;
③△PF1F2的內(nèi)切圓的圓心橫坐標為a;
其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年北京市石景山區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知P是雙曲線的右支上一點,A1,A2分別為雙曲線的左、右頂點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,雙曲線的離心率為e,有下列命題:
①雙曲線的一條準線被它的兩條漸近線所截得的線段長度為
②若|PF1|=e|PF2|,則e的最大值為
③△PF1F2的內(nèi)切圓的圓心橫坐標為a;
其中正確命題的序號是   

查看答案和解析>>

同步練習冊答案