【題目】對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0 , 則稱(chēng)x0是f(x)的一個(gè)不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=2x+ ﹣5,求此函數(shù)的不動(dòng)點(diǎn);
(2)若二次函數(shù)f(x)=ax2﹣x+3在x∈(1,+∞)上有兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:函數(shù)f(x)=2x+ ﹣5,
由f(x)=x,即x+ ﹣5=0,
即為x2﹣5x+4=0,解得x=1和4,
則此函數(shù)的不動(dòng)點(diǎn)為1,4
(2)解:二次函數(shù)f(x)=ax2﹣x+3在x∈(1,+∞)上有兩個(gè)不同的不動(dòng)點(diǎn),
即為ax2﹣2x+3=0在x∈(1,+∞)上有兩個(gè)不等的實(shí)根,
當(dāng)a>0時(shí),△=4﹣12a>0,且a﹣2+3>0, >0,解得0<a< ;
當(dāng)a<0,由于對(duì)稱(chēng)軸x= <0,在x∈(1,+∞)上沒(méi)有兩個(gè)不等的實(shí)根,不成立.
綜上可得,0<a< .
則實(shí)數(shù)a的取值范圍為(0, )
【解析】(1)由定義可得f(x)=x,解方程即可得到所求不動(dòng)點(diǎn);(2)由題意可得ax2﹣2x+3=0在x∈(1,+∞)上有兩個(gè)不等的實(shí)根,討論a>0或a<0和判別式大于0,對(duì)稱(chēng)軸介于x=1的右邊,x=1的函數(shù)值大于0,解不等式即可得到所求范圍.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用二次函數(shù)的性質(zhì),掌握增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減小;對(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,均值與方差都不變;
②設(shè)有一個(gè)回歸方程 ,變量x增加一個(gè)單位時(shí),y平均增加3個(gè)單位;
③線性回歸方程 必經(jīng)過(guò)點(diǎn) ;
④在吸煙與患肺病這兩個(gè)分類(lèi)變量的計(jì)算中,從獨(dú)立性檢驗(yàn)知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說(shuō)現(xiàn)有100人吸煙,那么其中有99人患肺病.其中錯(cuò)誤的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)兩個(gè)變量y和x進(jìn)行回歸分析,得到一組樣本數(shù)據(jù):(x1 , y1),(x2 , y2),…,(xn , yn),則下列說(shuō)法中不正確的是( )
A.由樣本數(shù)據(jù)得到的回歸方程 = x+ 必過(guò)樣本中心( , )
B.殘差平方和越小的模型,擬合的效果越好
C.用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸效果,R2越小,說(shuō)明模型的擬合效果越好
D.兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近于1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系.已知曲線C:ρsin2θ=2acosθ(a>0),過(guò)點(diǎn)P(﹣2,﹣4)的直線l的參數(shù)方程為 (t為參數(shù)),直線l與曲線C分別交于M、N兩點(diǎn).
(1)寫(xiě)出曲線C和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)市場(chǎng)調(diào)查,得到某種產(chǎn)品的資金投入x(單位:萬(wàn)元)與獲得的利潤(rùn)y(單位:萬(wàn)元)的數(shù)據(jù),如表所示:
資金投入x | 2 | 3 | 4 | 5 | 6 |
利潤(rùn)y | 2 | 3 | 5 | 6 | 9 |
(1)畫(huà)出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程x+;
(3)現(xiàn)投入資金10萬(wàn)元,求獲得利潤(rùn)的估計(jì)值為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)镈,若f(x)滿(mǎn)足條件:存在[a,b]D,使f(x)在[a,b]上的值域是[ , ],則成f(x)為“倍縮函數(shù)”,若函數(shù)f(x)=log2(2x+t)為“倍縮函數(shù)”,則t的范圍是( )
A.(0, )
B.(0,1)
C.(0, ]
D.( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:已知函數(shù)在上的最小值為,若恒成立,則稱(chēng)函數(shù)在上具有“”性質(zhì).
()判斷函數(shù)在上是否具有“”性質(zhì)?說(shuō)明理由.
()若在上具有“”性質(zhì),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一箱方便面共有50袋,用隨機(jī)抽樣方法從中抽取了10袋,并稱(chēng)其質(zhì)量(單位:g)結(jié)果為:60.5 61 60 60 61.5 59.5 59.5 58 60 60
(1)指出總體、個(gè)體、樣本、樣本容量;
(2)指出樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù);
(3)求樣本數(shù)據(jù)的方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.極坐標(biāo)系中方程ρ2﹣4ρcosθ=0和ρ﹣4cosθ=0表示的是同一曲線
B.
C.不等式|a+b|≥|a|﹣|b|等號(hào)成立的條件為ab≤0
D.在極坐標(biāo)系中方程 表示的圓和一條直線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com