分析 構(gòu)造函數(shù),f(x)=x-lnx,利用導數(shù)比較得到0<$\frac{lnx}{x}$<1,再比較即可.
解答 解:令f(x)=x-lnx(1<x<2),則f′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$>0,
∴函數(shù)y=f(x)(1<x<2)為增函數(shù),
∴f(x)>f(1)=1>0,
∴x>lnx>0
∴0<$\frac{lnx}{x}$<1,
∴($\frac{lnx}{x}$)2<$\frac{lnx}{x}$,
∵$\frac{ln{x}^{2}}{{x}^{2}}$-$\frac{lnx}{x}$=$\frac{2lnx-xlnx}{{x}^{2}}$=$\frac{(2-x)lnx}{{x}^{2}}$>0
∴($\frac{lnx}{x}$)2<$\frac{lnx}{x}$<$\frac{ln{x}^{2}}{{x}^{2}}$
故答案為:($\frac{lnx}{x}$)2<$\frac{lnx}{x}$<$\frac{ln{x}^{2}}{{x}^{2}}$
點評 本題考查了不等式的大小比較,關(guān)鍵是構(gòu)造函數(shù),屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 2 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$]k∈Z | B. | [kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$]k∈Z | ||
C. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$]k∈Z | D. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$]k∈Z |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com