a
取a>0且a1的任意值,函數(shù)的圖象恒過(guò)定點(diǎn)P,則P的坐標(biāo)為[
]
A .(1,0) |
B .(-2,0) |
C .(2,0) |
D .(-1,0) |
令 ,得x=-2. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
m-1 | 2m-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求點(diǎn)P的軌跡曲線(xiàn)C的方程;
(2)設(shè)曲線(xiàn)C與直線(xiàn)l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B,求曲線(xiàn)C的離心率e的取值范圍;
(3)設(shè)曲線(xiàn)C與直線(xiàn)l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B,O為坐標(biāo)原點(diǎn),且=-3,求a的值.
(文)(本小題滿(mǎn)分12分)設(shè)函數(shù)f(x)=x3+2ax2-3a2x+a(0<a<1).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[a,2]時(shí),恒有f(x)≤0,試確定實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求點(diǎn)P的軌跡曲線(xiàn)C的方程;
(2)設(shè)曲線(xiàn)C與直線(xiàn)l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B,求曲線(xiàn)C的離心率e的取值范圍;
(3)設(shè)曲線(xiàn)C與直線(xiàn)l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B,O為坐標(biāo)原點(diǎn),且=-3,求a的值.
(文)設(shè)函數(shù)f(x)=x3+2ax2-3a2x+a(0<a<1).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[a,2]時(shí),恒有f(x)≤0,試確定實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性,證明你的結(jié)論;
(2)若當(dāng)x>0時(shí),f(x)>恒成立,求正整數(shù)k的最大值.(參考數(shù)據(jù):ln2≈0.7,ln3≈1.1)
(文) P1是橢圓+y2=1(a>0且a≠1)上不與頂點(diǎn)重合的任一點(diǎn),P1P2是垂直于x軸的弦,A1(-a,0),A2(a,0)是橢圓的兩個(gè)端點(diǎn),直線(xiàn)A1P1與直線(xiàn)A2P2交點(diǎn)為P.
(1)求P點(diǎn)的軌跡曲線(xiàn)C的方程;
(2)設(shè)曲線(xiàn)C與直線(xiàn)l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B,求曲線(xiàn)C的離心率e的取值范圍;
(3)設(shè)曲線(xiàn)C與直線(xiàn)l:x+y=1相交于兩個(gè)不同的點(diǎn)A、B,O為坐標(biāo)原點(diǎn),且=-3,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年湖南省長(zhǎng)沙一中高三(下)第九次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com