14.若復(fù)數(shù)z滿足$\frac{1-z}{1+z}=i$,則|$\overline{z}$-2|的值為$\sqrt{5}$.

分析 把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)z,求出$\overline{z}$,再由復(fù)數(shù)求模公式計(jì)算得答案.

解答 解:由$\frac{1-z}{1+z}=i$,
得$z=\frac{1-i}{1+i}=\frac{(1-i)^{2}}{(1+i)(1-i)}=\frac{-2i}{2}=-i$,
∴$\overline{z}=i$.
∴|$\overline{z}$-2|=$|i-2|=\sqrt{1+(-2)^{2}}=\sqrt{5}$.
故答案為:$\sqrt{5}$.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)是定義在R上的偶函數(shù),且f(x+2)=f(2-x)時(shí),當(dāng)x∈[-2,0]時(shí),$f(x)={(\frac{{\sqrt{2}}}{2})^x}-1$,若(-2,6)在區(qū)間內(nèi)關(guān)于x的方程xf(x)-loga(x+2)=0(a>0且a≠1)有且只有4個(gè)不同的根,則實(shí)數(shù)a的范圍是( 。
A.$(\frac{1}{4},1)$B.(1,4)C.(1,8)D.(8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若函數(shù)f(a)=$\int_0^a{({2+sinx})dx}$,則$f({\frac{π}{2}})$等于( 。
A.1B.0C.π+1D.1-cos1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若函數(shù)y=2sinωx(ω>0)在區(qū)間(-$\frac{π}{6}$,$\frac{π}{3}$)上只有一個(gè)極值點(diǎn),則ω的取值范圍是( 。
A.1≤ω≤$\frac{3}{2}$B.$\frac{3}{2}$<ω≤3C.3≤ω<4D.$\frac{3}{2}$≤ω<$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)$f(x)=lnx-ax+\frac{1-a}{x}-1$.
(1)若f(x)在x=2處取得極值,求a的值;
(2)若a=1,函數(shù)$h(x)=ln(m{x^2}+\frac{x}{2})+\frac{{-2{x^2}-x+2}}{2x+1}-f(x)$,且h(x)在(0,+∞)上的最小值為2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.為了響應(yīng)國(guó)家號(hào)召,某企業(yè)節(jié)能降耗技術(shù)改造后,在生產(chǎn)某產(chǎn)品過(guò)程中的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對(duì)應(yīng)數(shù)據(jù)如表所示:
x3456
y2.5344.5
若根據(jù)表中數(shù)據(jù)得出y關(guān)于x的線性回歸方程為y=0.7x+a,若生產(chǎn)7噸產(chǎn)品,預(yù)計(jì)相應(yīng)的生產(chǎn)能耗為5.25噸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)是f′(x),若f(x)=f(2-x),且當(dāng)x∈(-∞,1)時(shí),(x-1)f′(x)<0設(shè)a=f($\frac{1}{e}$),b=f($\sqrt{2}$),c=f(log28),則( 。
A.c<a<bB.a>b>cC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)函數(shù)f(x)=1g(arcsin$\frac{x}{10}$),則f(x)的定義域?yàn)椋?,10].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知方程x2+(4+i)x+4+ai=0(a∈R)有實(shí)根b,且z=a+bi,則復(fù)數(shù)z的共軛復(fù)數(shù)等于( 。
A.2-2iB.2+2iC.-2+2iD.-2-2i

查看答案和解析>>

同步練習(xí)冊(cè)答案