(12分)已知的反函數(shù)為。
(I)求的單調區(qū)間;(II)若對任意,不等式恒成立,求實數(shù)的取值范圍。
(Ⅰ)(-1,0)、(0,)   (Ⅱ)   
(I)由

時,時,,

的單調遞增區(qū)間是(-1,0),單調遞減區(qū)間是(0,
(II)設

時,上是減函數(shù);
時,上是增函數(shù)。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

,則等于( )
A.B.C.0D.以上都不是

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),
(1)若,且函數(shù)存在單調遞減區(qū)間,求的取值范圍;
(2)當時,求函數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù),它們的圖象在軸上的公共點處有公切線,則當時,的大小關系是                                              (  )
A.B.C.D.的大小不確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

f(x)=x(x+1)(x+2)…(x+n),則f′(0)=_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

( 14分)已知函數(shù),其中為無理數(shù).(1)若,求證:;(2)若在其定義域內是單調函數(shù),求的取值范圍;(3)對于區(qū)間(1,2)中的任意常數(shù),是否存在使成立?
若存在,求出符合條件的一個;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.已知函數(shù)f(x)在x=2處的導數(shù)為4,則f(x)的解析式可能為
A.f(x)=x2+4B.f(x)=2x
C.f(x)=x3D.f(x)=x-1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù),且,則                 
A.0B.-1C.3D.-6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則等于(       )
A.B.C.D.

查看答案和解析>>

同步練習冊答案