【題目】已知函數(shù)f(2x)=x2﹣2ax+3
(1)求函數(shù)y=f(x)的解析式
(2)若函數(shù)y=f(x)在[ ,8]上的最小值為﹣1,求a的值.

【答案】
(1)解:設(shè)t=2x,則t>0,且x= 代入解析式得,

,t>0,


(2)解:由 ≤x≤8得,﹣1≤ ≤3,

= +3﹣a2

①當(dāng)a≤﹣1時(shí),即 =﹣1,f(x)的最小值是1+2a+3=﹣1,

解得a= ,符合題意;

②當(dāng)﹣1<a<3時(shí),即 =a時(shí),f(x)的最小值是3﹣a2=﹣1,

解得a=2或﹣2(舍去),則a=2;

③當(dāng)a≥3時(shí),即 =3時(shí),f(x)的最小值是9﹣6a+3=﹣1,

解得a= <3,舍去,

綜上得,a的值為: 或2


【解析】(1)根據(jù)題意設(shè)t=2x , 求出t的范圍和x,代入解析式,再把t換為x,求出f(x)的解析式;(2)由x的范圍求出 的范圍,把 作為一個(gè)整體對(duì)f(x)配方,根據(jù)區(qū)間和對(duì)稱軸分類討論,由二次函數(shù)的性質(zhì)求出最小值,列出方程求出a的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí)f(x)=2x﹣x2 ,
(1)求f(x)的表達(dá)式;
(2)設(shè)0<a<b,當(dāng)x∈[a,b]時(shí),f(x)的值域?yàn)? ,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是平行四邊形, 的中點(diǎn), 平面的中點(diǎn).

(1)證明: 平面

(2)證明: 平面;

(3)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1.設(shè)f(x)=
(1)求a、b的值;
(2)若不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求實(shí)數(shù)k的取值范圍;
(3)若f(|2x﹣1|)+k ﹣3k=0有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=cos2x+asinx在區(qū)間( , )是減函數(shù),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓(x+2)2+y2=5關(guān)于直線x﹣y+1=0對(duì)稱的圓的方程為(
A.(x﹣2)2+y2=5
B.x2+(y﹣2)2=5
C.(x﹣1)2+(y﹣1)2=5
D.(x+1)2+(y+1)2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在四面體中,,,,則四面體外接球的表面積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,

(1)證明:BC1⊥面A1B1CD;
(2)求直線A1B和平面A1B1CD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=|x|,g(x)=
B.f(x)=lg x2 , g(x)=2lg x
C.f(x)= ,g(x)=x+1
D.f(x)= ? ,g(x)=

查看答案和解析>>

同步練習(xí)冊(cè)答案